If \[{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15\] then find the maximum value of f(x).
A)$ - 66$
B)$30$
C)$ - 30$
D)$66$
Answer
Verified
476.1k+ views
Hint: First find the derivative of the function ${{\text{f}}^{'}}\left( {\text{x}} \right)$ and equate it to zero to find values of x. Then put these values in the second derivative ${{\text{f}}^{''}}\left( {\text{x}} \right)$ of the function. If ${{\text{f}}^{''}}\left( {\text{x}} \right)$$ > 0$ then f(x) has minima at x, If ${{\text{f}}^{''}}\left( {\text{x}} \right)$$ < 0$ then f(x) has maxima at x.The maximum value value can be find by putting the value of maxima in f(x).
Complete step-by-step answer:
Given function, \[{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15\]-- (i)
On differentiating the given function w.r.t. x we get,
$ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {3{x^3} - 9{x^2} - 27x + 15} \right)$
We know that $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$ and $\dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0$
On applying this we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 3 \times 3{x^{3 - 1}} - 9 \times 2{x^{2 - 1}} - 27{x^{1 - 1}} + 0\]
On solving further we get,\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9{x^2} - 18x - 27\]
On putting ${{\text{f}}^{'}}\left( {\text{x}} \right) = 0$ , we get-
$ \Rightarrow 9{x^2} - 18x - 27 = 0$
On taking $9$ common and transferring on the right side we get-
$ \Rightarrow {x^2} - 2x - 3 = 0$
On factoring we get,
$ \Rightarrow {x^2} - 3x + x - 3 = 0$
$ \Rightarrow \left( {{x^2} - 3x} \right) + \left( {x - 3} \right) = 0$
On taking x and 1 common we get,
$ \Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0$
On taking $\left( {x - 3} \right)$ common we get,
$ \Rightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0$
On putting both factors equal to zero we get,
$ \Rightarrow x - 3 = 0 \Rightarrow x = 3$
or
$ \Rightarrow x + 1 = 0 \Rightarrow x = - 1$
Now again differentiate the first derivative w.r.t. x-
\[ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {9{x^2} - 18x - 27} \right)\]
On differentiating we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9 \times 2{x^{2 - 1}} - 18{x^{1 - 1}}\]
On further solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = 18x - 18$ -- (ii)
Now put x=$3$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 18 \times 3 - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 54 - 18 = 36$
Now here$ \Rightarrow {{\text{f}}^{''}}\left( {\text{3}} \right) = 36 > 0$
So f(x) has minima at x= $3$
Now put x=$ - 1$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = 18\left( { - 1} \right) - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 18 - 18 = - 36$
Here,$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 36 < 0$
So f(x) has maxima at x=$ - 1$
The maximum value of the function f(x) will be at x=$ - 1$
So on putting x=$3$ in eq. (i) we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 3{\left( { - 1} \right)^3} - 9{\left( { - 1} \right)^2} - 27\left( { - 1} \right) + 15\]
On simplifying we get,
\[
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 3 - 9 + 27 + 15 \\
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 12 + 42 = 30 \\
\]
∴The function has maximum value $30$
Hence option B is the correct answer.
Note: Since f(x) has minima at x= $3$ so function also has minimum value. To find the minimum value put the value of x=$3$ in eq. (i)
\[
\Rightarrow {\text{f}}\left( x \right) = 3{\left( 3 \right)^3} - 9{\left( 3 \right)^2} - 27\left( 3 \right) + 15 \\
\Rightarrow {\text{f}}\left( x \right) = 3 \times 27 - 9 \times 9 - 27 \times 3 + 15 \\
\\
\]
On simplifying we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 81 - 81 - 81 + 15 = - 81 + 15 = - 66\]
So the minimum value of given function is $ - 66$
Complete step-by-step answer:
Given function, \[{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15\]-- (i)
On differentiating the given function w.r.t. x we get,
$ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {3{x^3} - 9{x^2} - 27x + 15} \right)$
We know that $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$ and $\dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0$
On applying this we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 3 \times 3{x^{3 - 1}} - 9 \times 2{x^{2 - 1}} - 27{x^{1 - 1}} + 0\]
On solving further we get,\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9{x^2} - 18x - 27\]
On putting ${{\text{f}}^{'}}\left( {\text{x}} \right) = 0$ , we get-
$ \Rightarrow 9{x^2} - 18x - 27 = 0$
On taking $9$ common and transferring on the right side we get-
$ \Rightarrow {x^2} - 2x - 3 = 0$
On factoring we get,
$ \Rightarrow {x^2} - 3x + x - 3 = 0$
$ \Rightarrow \left( {{x^2} - 3x} \right) + \left( {x - 3} \right) = 0$
On taking x and 1 common we get,
$ \Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0$
On taking $\left( {x - 3} \right)$ common we get,
$ \Rightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0$
On putting both factors equal to zero we get,
$ \Rightarrow x - 3 = 0 \Rightarrow x = 3$
or
$ \Rightarrow x + 1 = 0 \Rightarrow x = - 1$
Now again differentiate the first derivative w.r.t. x-
\[ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {9{x^2} - 18x - 27} \right)\]
On differentiating we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9 \times 2{x^{2 - 1}} - 18{x^{1 - 1}}\]
On further solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = 18x - 18$ -- (ii)
Now put x=$3$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 18 \times 3 - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 54 - 18 = 36$
Now here$ \Rightarrow {{\text{f}}^{''}}\left( {\text{3}} \right) = 36 > 0$
So f(x) has minima at x= $3$
Now put x=$ - 1$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = 18\left( { - 1} \right) - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 18 - 18 = - 36$
Here,$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 36 < 0$
So f(x) has maxima at x=$ - 1$
The maximum value of the function f(x) will be at x=$ - 1$
So on putting x=$3$ in eq. (i) we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 3{\left( { - 1} \right)^3} - 9{\left( { - 1} \right)^2} - 27\left( { - 1} \right) + 15\]
On simplifying we get,
\[
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 3 - 9 + 27 + 15 \\
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 12 + 42 = 30 \\
\]
∴The function has maximum value $30$
Hence option B is the correct answer.
Note: Since f(x) has minima at x= $3$ so function also has minimum value. To find the minimum value put the value of x=$3$ in eq. (i)
\[
\Rightarrow {\text{f}}\left( x \right) = 3{\left( 3 \right)^3} - 9{\left( 3 \right)^2} - 27\left( 3 \right) + 15 \\
\Rightarrow {\text{f}}\left( x \right) = 3 \times 27 - 9 \times 9 - 27 \times 3 + 15 \\
\\
\]
On simplifying we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 81 - 81 - 81 + 15 = - 81 + 15 = - 66\]
So the minimum value of given function is $ - 66$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE