Answer
Verified
460.5k+ views
Hint: In this type of problem of functions firstly find the value of internal function $f\left( 2 \right)$ by putting the $x = 2$ in the given equation then put the value obtained for $f\left( 2 \right)$ in place of $x$ in the given equation of $f\left( x \right)$, It will give the value of the function $f\left( {f\left( 2 \right)} \right)$.
Complete step by step answer:
Here, The given function is $f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$. This is an identity function.
We have to find the value of $f\left( {f\left( 2 \right)} \right)$. If we compare this function with the function $f\left( x \right)$ we can say that to find $f\left( {f\left( 2 \right)} \right)$ we replace $x$ by value of $f\left( 2 \right)$ in the given function.
So, firstly find the value of $f\left( 2 \right)$
By, Putting the value $x = 2$ in the given equation we get the value of $f\left( 2 \right)$ as
$f\left( 2 \right) = \dfrac{{2 \times 2 + 1}}{{3 \times 2 - 2}}$
$ \Rightarrow f\left( 2 \right) = \dfrac{{4 + 1}}{{6 - 2}}$
$\therefore f\left( 2 \right) = \dfrac{5}{4}$
To find the value of $f\left( {f\left( 2 \right)} \right)$ , we should replace the $x$ of given function by $f\left( 2 \right)$.
It gives $f\left( {f\left( 2 \right)} \right) = \dfrac{{2f\left( 2 \right) + 1}}{{3f\left( 2 \right) - 2}}$
Above, we get $f\left( 2 \right)$ is equal to $\dfrac{5}{4}$ , put the value of $x = f\left( 2 \right)$ in the given function $f\left( x \right)$
Then, put $f\left( 2 \right) = \dfrac{5}{4}$ in the above equation.
This implies
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{\dfrac{{10 + 4}}{4}}}{{\dfrac{{15 - 8}}{4}}}$
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{14}}{7}$
$\therefore f\left( {\dfrac{5}{4}} \right) = 2$
Thus, the required value of the function $f\left( {f\left( 2 \right)} \right) = 2$
Hence, option D is the correct option.
Note:
The given function $f\left( {f\left( x \right)} \right)$ is an identity function. We can verify it by putting $x = y$ in the given function. If a function is an identity function then its value will remain the same as that of the variable of that function.
Proof:Put in the equation $$f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$$
$x = y$, Then, we get $$f\left( y \right) = \dfrac{{2y + 1}}{{3y - 2}}$$
$f\left( {f\left( y \right)} \right) = \dfrac{{2f\left( y \right) + 1}}{{3f\left( y \right) - 2}}$
And then the value of
$\eqalign{
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{2\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) + 1}}{{3\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) - 2}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{\dfrac{{4y + 2 + 3y - 2}}{{3y - 2}}}}{{\dfrac{{6y + 3 - 6y + 4}}{{3y - 2}}}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{7y}}{7} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = y \cr} $
This derivation shows that this function is an identity function so the value of $f\left( {f\left( x \right)} \right)$ is the same as the value of $x$.
Complete step by step answer:
Here, The given function is $f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$. This is an identity function.
We have to find the value of $f\left( {f\left( 2 \right)} \right)$. If we compare this function with the function $f\left( x \right)$ we can say that to find $f\left( {f\left( 2 \right)} \right)$ we replace $x$ by value of $f\left( 2 \right)$ in the given function.
So, firstly find the value of $f\left( 2 \right)$
By, Putting the value $x = 2$ in the given equation we get the value of $f\left( 2 \right)$ as
$f\left( 2 \right) = \dfrac{{2 \times 2 + 1}}{{3 \times 2 - 2}}$
$ \Rightarrow f\left( 2 \right) = \dfrac{{4 + 1}}{{6 - 2}}$
$\therefore f\left( 2 \right) = \dfrac{5}{4}$
To find the value of $f\left( {f\left( 2 \right)} \right)$ , we should replace the $x$ of given function by $f\left( 2 \right)$.
It gives $f\left( {f\left( 2 \right)} \right) = \dfrac{{2f\left( 2 \right) + 1}}{{3f\left( 2 \right) - 2}}$
Above, we get $f\left( 2 \right)$ is equal to $\dfrac{5}{4}$ , put the value of $x = f\left( 2 \right)$ in the given function $f\left( x \right)$
Then, put $f\left( 2 \right) = \dfrac{5}{4}$ in the above equation.
This implies
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{\dfrac{{10 + 4}}{4}}}{{\dfrac{{15 - 8}}{4}}}$
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{14}}{7}$
$\therefore f\left( {\dfrac{5}{4}} \right) = 2$
Thus, the required value of the function $f\left( {f\left( 2 \right)} \right) = 2$
Hence, option D is the correct option.
Note:
The given function $f\left( {f\left( x \right)} \right)$ is an identity function. We can verify it by putting $x = y$ in the given function. If a function is an identity function then its value will remain the same as that of the variable of that function.
Proof:Put in the equation $$f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$$
$x = y$, Then, we get $$f\left( y \right) = \dfrac{{2y + 1}}{{3y - 2}}$$
$f\left( {f\left( y \right)} \right) = \dfrac{{2f\left( y \right) + 1}}{{3f\left( y \right) - 2}}$
And then the value of
$\eqalign{
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{2\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) + 1}}{{3\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) - 2}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{\dfrac{{4y + 2 + 3y - 2}}{{3y - 2}}}}{{\dfrac{{6y + 3 - 6y + 4}}{{3y - 2}}}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{7y}}{7} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = y \cr} $
This derivation shows that this function is an identity function so the value of $f\left( {f\left( x \right)} \right)$ is the same as the value of $x$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE