Answer
Verified
502.2k+ views
Hint- Calculate LHL and RHL of the given function.
LHL $\mathop { = \lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right)$, RHL$ = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right)$
Given function
$f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{x^2} - 1}}{{x - 1}};{\text{ for }}x \ne 1} \\
{2;{\text{ for }}x = 1}
\end{array}} \right.$
We have to check its continuity at $x = 1$.
So, consider LHL
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$where ‘-’ sign indicates LHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 - h} \right)$ in place of x.
For LHL the function is left sided to 1. i.e. for $x \ne 1$.
LHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 - h} \right)}^2} - 1}}{{\left( {1 - h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} - 2h - 1}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h - 2}}{{ - 1}}} \right)$
Now substitute h = 0, we have
LHL $ = \dfrac{{0 - 2}}{{ - 1}} = 2$
Now consider RHL
$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)$where ‘+’ sign indicates RHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 + h} \right)$ in place of x.
For RHL the function is right sided to 1. i.e. for $x \ne 1$.
RHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 + h} \right)}^2} - 1}}{{\left( {1 + h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} + 2h - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h + 2}}{1}} \right)$
Now substitute h = 0, we have
RHL $ = \dfrac{{0 + 2}}{1} = 2$.
Also $f\left( 1 \right) = 2$ (given).
Now, since
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 2$
Hence $f\left( x \right)$ is continuous at $x = 1$.
Note- In such types of questions the key concept we have to remember is that if the left hand limit, right hand limit and the value of function at a given point are equal then the function is continuous at a given point. So calculate LHL, RHL at a given point and check whether they are equal and also check they are equal to the value of the function at that point if yes then the function is continuous if not then the function is not continuous.
LHL $\mathop { = \lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right)$, RHL$ = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right)$
Given function
$f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{x^2} - 1}}{{x - 1}};{\text{ for }}x \ne 1} \\
{2;{\text{ for }}x = 1}
\end{array}} \right.$
We have to check its continuity at $x = 1$.
So, consider LHL
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$where ‘-’ sign indicates LHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 - h} \right)$ in place of x.
For LHL the function is left sided to 1. i.e. for $x \ne 1$.
LHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 - h} \right)}^2} - 1}}{{\left( {1 - h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} - 2h - 1}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h - 2}}{{ - 1}}} \right)$
Now substitute h = 0, we have
LHL $ = \dfrac{{0 - 2}}{{ - 1}} = 2$
Now consider RHL
$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)$where ‘+’ sign indicates RHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 + h} \right)$ in place of x.
For RHL the function is right sided to 1. i.e. for $x \ne 1$.
RHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 + h} \right)}^2} - 1}}{{\left( {1 + h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} + 2h - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h + 2}}{1}} \right)$
Now substitute h = 0, we have
RHL $ = \dfrac{{0 + 2}}{1} = 2$.
Also $f\left( 1 \right) = 2$ (given).
Now, since
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 2$
Hence $f\left( x \right)$ is continuous at $x = 1$.
Note- In such types of questions the key concept we have to remember is that if the left hand limit, right hand limit and the value of function at a given point are equal then the function is continuous at a given point. So calculate LHL, RHL at a given point and check whether they are equal and also check they are equal to the value of the function at that point if yes then the function is continuous if not then the function is not continuous.
Recently Updated Pages
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
The locus of the midpoint of the chord of contact of class 11 maths JEE_Main
The number of common tangents to the circles x2 + y2 class 11 maths JEE_Main
A circle passes through the intersection points of class 11 maths JEE_Main
The center of a circle passing through the points 0 class 11 maths JEE_Main
If the two circles x 12 + y 32 r2 and x2 + y2 8x + class 11 maths JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE