Answer
Verified
468.6k+ views
Hint: The function to be continuous at a particular point like say a, then we have a condition for a, where $f\left( x \right)$ function needs to have its left hand limit, Right hand limit and value equal to each other. Like \[ \Rightarrow \dfrac{{\lim }}{{x \to {a^ - }}}\;f\left( x \right) = f\left( a \right) = \;\dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)\]
Complete step by step solution: let’s begin with the given function which is represented as
$\begin{gathered}
f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\;\;\;\;\;\;\;\; \\
\\
\end{gathered} $ $\begin{gathered}
x \geqslant 0 \\
x < 0 \\
\end{gathered} $
As we know that from given data,$f\left( {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right) = 2,$ so for this we will use the function $f\left( x \right) = {x^2} + \propto $ because ${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$ is greater than 0
So, $f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2$
\[ \Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}\]
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
$so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)$
$ \Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)$
$ \Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B$
$ \propto - 2 + B$
So we get,$B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}$
$ \Rightarrow $ we get $B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}$
Hence we get the value of \[\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}} \right)\] option A is the correct answer.
Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)$ Similarly, for differentiability of a function at point a is checked by
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)$
Complete step by step solution: let’s begin with the given function which is represented as
$\begin{gathered}
f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\;\;\;\;\;\;\;\; \\
\\
\end{gathered} $ $\begin{gathered}
x \geqslant 0 \\
x < 0 \\
\end{gathered} $
As we know that from given data,$f\left( {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right) = 2,$ so for this we will use the function $f\left( x \right) = {x^2} + \propto $ because ${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$ is greater than 0
So, $f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2$
\[ \Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}\]
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
$so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)$
$ \Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)$
$ \Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B$
$ \propto - 2 + B$
So we get,$B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}$
$ \Rightarrow $ we get $B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}$
Hence we get the value of \[\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}} \right)\] option A is the correct answer.
Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)$ Similarly, for differentiability of a function at point a is checked by
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE