
If \[f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\] \[
{\text{for}}\;x \geqslant 0 \\
{\text{for}}\;x < 0 \\
\]
And $f\left( {\dfrac{1}{2}} \right) = 2$ is continuous at x =0, value of $\left( { \propto ,P} \right)$ is :
A) $\left(\dfrac{7}{4}, -\dfrac{1}{4}\right)$
B) $\left(4-\sqrt{5},2-\sqrt{5}\right)$
C) $\left(0, -1\right)$
D) $\left(\dfrac{7}{4}, \dfrac{1}{4}\right)$
Answer
592.5k+ views
Hint: The function to be continuous at a particular point like say a, then we have a condition for a, where $f\left( x \right)$ function needs to have its left hand limit, Right hand limit and value equal to each other. Like \[ \Rightarrow \dfrac{{\lim }}{{x \to {a^ - }}}\;f\left( x \right) = f\left( a \right) = \;\dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)\]
Complete step by step solution: let’s begin with the given function which is represented as
$\begin{gathered}
f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\;\;\;\;\;\;\;\; \\
\\
\end{gathered} $ $\begin{gathered}
x \geqslant 0 \\
x < 0 \\
\end{gathered} $
As we know that from given data,$f\left( {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right) = 2,$ so for this we will use the function $f\left( x \right) = {x^2} + \propto $ because ${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$ is greater than 0
So, $f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2$
\[ \Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}\]
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
$so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)$
$ \Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)$
$ \Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B$
$ \propto - 2 + B$
So we get,$B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}$
$ \Rightarrow $ we get $B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}$
Hence we get the value of \[\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}} \right)\] option A is the correct answer.
Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)$ Similarly, for differentiability of a function at point a is checked by
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)$
Complete step by step solution: let’s begin with the given function which is represented as
$\begin{gathered}
f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\;\;\;\;\;\;\;\; \\
\\
\end{gathered} $ $\begin{gathered}
x \geqslant 0 \\
x < 0 \\
\end{gathered} $
As we know that from given data,$f\left( {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right) = 2,$ so for this we will use the function $f\left( x \right) = {x^2} + \propto $ because ${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$ is greater than 0
So, $f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2$
\[ \Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}\]
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
$so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)$
$ \Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)$
$ \Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B$
$ \propto - 2 + B$
So we get,$B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}$
$ \Rightarrow $ we get $B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}$
Hence we get the value of \[\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}} \right)\] option A is the correct answer.
Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)$ Similarly, for differentiability of a function at point a is checked by
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

