Answer
Verified
470.1k+ views
Hint: We can solve the given question using Poisson distribution formula,
$ \Rightarrow $ \[{\text{P}}\left( {{\text{X = r}}} \right) = \dfrac{{{{\text{e}}^{ - {\text{m}}}}{{\text{m}}^{\text{r}}}}}{{{\text{r!}}}}\]
Where ‘m’ is the average number of events in a given time interval or mean or variance of distribution and ‘X=r’ is the number of events observed over a given time period. Put the given values in the formula and simplify it. Here, e is the base of the natural logarithm (also called Euler’s number).
Complete step by step answer:
Given that the Poisson distribution when X$ = 0$ is P=$0.2$
And we have to find the variance of the distribution.
Now, according to Poisson distribution,
$ \Rightarrow $ \[{\text{P}}\left( {{\text{X = r}}} \right) = \dfrac{{{{\text{e}}^{ - {\text{m}}}}{{\text{m}}^{\text{r}}}}}{{{\text{r!}}}}\] --- (i)
Where ‘m’ is the mean or variance of distribution or the average number of events in a given time interval and ‘X=r’ is the number of events observed over a given time period.
Here, e is the base of natural logarithm (also called Euler’s number).
Now we know the value of X$ = $ r$ = 0$
On putting this value in eq. (i), we get-
$ \Rightarrow {\text{P}}\left( {{\text{X = 0}}} \right) = \dfrac{{{{\text{e}}^{{\text{ - m}}}}{{\text{m}}^{\text{0}}}}}{{0!}}$
We know that $0! = 1$ and ${{\text{m}}^{\text{0}}} = 1$ . On putting these values in the above equation we get,
$ \Rightarrow {\text{P}}\left( {{\text{X = 0}}} \right) = \dfrac{{{{\text{e}}^{{\text{ - m}}}}.1}}{1}$
$ \Rightarrow {\text{P}}\left( {{\text{X = 0}}} \right) = {{\text{e}}^{{\text{ - m}}}}$
And it is given that P=$0.2$
So on putting the value of P in the equation we get,
$ \Rightarrow {{\text{e}}^{{\text{ - m}}}} = 0.2$
We can write $0.2 = \dfrac{2}{{10}}$ then the equation becomes,
$ \Rightarrow {e^{ - m}} = \dfrac{2}{{10}}$
$ \Rightarrow \dfrac{{10}}{2} = \dfrac{1}{{{e^{ - m}}}}$
$ \Rightarrow 5 = {e^m}$
On taking log both side we get,
$ \Rightarrow {\log _e}5 = {\log _e}{e^m}$
We know that ${\log _e}{x^a} = a{\log _e}x$
On applying this we get,
$ \Rightarrow {\log _e}5 = m{\log _e}e$
Since ${\log _e}e = 1$ , we get
$ \Rightarrow m = {\log _e}5$
Hence option C is correct.
Note: Poisson distribution is used to predict the probability of certain events from happening when you know how often the event has occurred. The conditions for Poisson distribution are
1. An event can occur any number of times during a time period.
2. Events occur independently. Example-for the number of phone calls an office would receive, there is no reason to expect a caller to affect the chances of another person calling.
3. The rate of occurrence is constant and not based on time.
4. The probability of an event occurring is proportional to the length of the time period
$ \Rightarrow $ \[{\text{P}}\left( {{\text{X = r}}} \right) = \dfrac{{{{\text{e}}^{ - {\text{m}}}}{{\text{m}}^{\text{r}}}}}{{{\text{r!}}}}\]
Where ‘m’ is the average number of events in a given time interval or mean or variance of distribution and ‘X=r’ is the number of events observed over a given time period. Put the given values in the formula and simplify it. Here, e is the base of the natural logarithm (also called Euler’s number).
Complete step by step answer:
Given that the Poisson distribution when X$ = 0$ is P=$0.2$
And we have to find the variance of the distribution.
Now, according to Poisson distribution,
$ \Rightarrow $ \[{\text{P}}\left( {{\text{X = r}}} \right) = \dfrac{{{{\text{e}}^{ - {\text{m}}}}{{\text{m}}^{\text{r}}}}}{{{\text{r!}}}}\] --- (i)
Where ‘m’ is the mean or variance of distribution or the average number of events in a given time interval and ‘X=r’ is the number of events observed over a given time period.
Here, e is the base of natural logarithm (also called Euler’s number).
Now we know the value of X$ = $ r$ = 0$
On putting this value in eq. (i), we get-
$ \Rightarrow {\text{P}}\left( {{\text{X = 0}}} \right) = \dfrac{{{{\text{e}}^{{\text{ - m}}}}{{\text{m}}^{\text{0}}}}}{{0!}}$
We know that $0! = 1$ and ${{\text{m}}^{\text{0}}} = 1$ . On putting these values in the above equation we get,
$ \Rightarrow {\text{P}}\left( {{\text{X = 0}}} \right) = \dfrac{{{{\text{e}}^{{\text{ - m}}}}.1}}{1}$
$ \Rightarrow {\text{P}}\left( {{\text{X = 0}}} \right) = {{\text{e}}^{{\text{ - m}}}}$
And it is given that P=$0.2$
So on putting the value of P in the equation we get,
$ \Rightarrow {{\text{e}}^{{\text{ - m}}}} = 0.2$
We can write $0.2 = \dfrac{2}{{10}}$ then the equation becomes,
$ \Rightarrow {e^{ - m}} = \dfrac{2}{{10}}$
$ \Rightarrow \dfrac{{10}}{2} = \dfrac{1}{{{e^{ - m}}}}$
$ \Rightarrow 5 = {e^m}$
On taking log both side we get,
$ \Rightarrow {\log _e}5 = {\log _e}{e^m}$
We know that ${\log _e}{x^a} = a{\log _e}x$
On applying this we get,
$ \Rightarrow {\log _e}5 = m{\log _e}e$
Since ${\log _e}e = 1$ , we get
$ \Rightarrow m = {\log _e}5$
Hence option C is correct.
Note: Poisson distribution is used to predict the probability of certain events from happening when you know how often the event has occurred. The conditions for Poisson distribution are
1. An event can occur any number of times during a time period.
2. Events occur independently. Example-for the number of phone calls an office would receive, there is no reason to expect a caller to affect the chances of another person calling.
3. The rate of occurrence is constant and not based on time.
4. The probability of an event occurring is proportional to the length of the time period
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE