Answer
Verified
468.3k+ views
Hint: We solve this question by assuming the value of \[\log x\] as a variable and then changing the limits and the integration in terms of that variable. Solve the integration by using integration by parts. Then after we get the value of integration in terms of n, we substitute the values for n and solve for \[{P_{10}} - 90{P_8}\].
*In integration by parts we use the sequence of ILATE (Inverse trigonometric, Logarithms , algebraic, trigonometric , exponential) for choosing the value of \[u,v\] and then substitute in the integration formula of by parts integration.
* If we have \[\int {uvdx} \] then the value of integral is given by \[\int {uvdx = u\int {vdx - \int {u'\left( {\int {vdx} } \right)dx} } } \] where \[u' = \dfrac{{du}}{{dx}}\] is differentiation of \[u\] with respect to \[x\].
Complete step-by-step answer:
We have \[{P_n} = \int\limits_1^e {{{(\log x)}^n}dx} \]
Let us assume \[\log x = t\]
Taking exponential function on both sides of the equation we get,
\[
\Rightarrow {e^{\log x}} = {e^t} \\
\Rightarrow x = {e^t} \\
\] {Since, exponential and log function cancel each other}
Now differentiating both sides with respect to their respective variables we get
\[ \Rightarrow dx = {e^t}dt\]
Also, for the limits of integral
\[\because \log x = t\]
When \[x = 1 \Rightarrow \log 1 = 0\], So \[t = 0\]
When \[x = e \Rightarrow \log e = 1\], So \[t = 1\]
Now we will write the integral in terms of variable t as
\[
\Rightarrow \int\limits_1^e {{{(\log x)}^n}dx} = \int\limits_0^1 {{t^n}.{e^t}dt} \\
\Rightarrow {P_n} = \int\limits_0^1 {{t^n}.{e^t}dt} \\
\]
Now we will solve the integration by using integration by parts.
Looking at the integral \[\int\limits_0^1 {{t^n}.{e^t}dt} \]
Using the ILATE sequence we can tell that the term comes first in the sequence is \[u\] and which comes later is \[v\] i.e. in this case we have the terms exponential and algebraic , first comes the algebraic term then comes the exponential term so \[u\] is \[{t^n}\] and \[v\]is \[{e^t}\]
\[u = {t^n},v = {e^t}\]
Now we calculate the differentiation of the term \[u\]
\[
u' = \dfrac{{du}}{{dt}} \\
u' = \dfrac{{d({t^n})}}{{dt}} \\
u' = n{t^{n - 1}} \\
\]
Now substitute the values in equation \[\int {uvdt = u\int {vdt - \int {u'\left( {\int {vdt} } \right)dt} } } \]
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = {t^n}\int\limits_0^1 {{e^t}dt} - \int\limits_0^1 {(n{t^{n - 1}})\left( {\int {{e^t}dt} } \right)dt} \] \[...(i)\]
Now we know \[\int {{e^t}dt = {e^t}} \]
Therefore substitute the value of\[\int {{e^t}dt = {e^t}} \] in equation \[(i)\]
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = \left[ {{t^n}{e^t}} \right]_0^1 - \int\limits_0^1 {(n{t^{n - 1}}).{e^t}dt} \]
Now we can solve and bring out constant terms from the integral sign.
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = \left[ {{1^n}{e^1} - {0^n}{e^0}} \right] - n\int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \]
Since the value of any number having power zero gives the value one.
\[
\Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = \left[ {1e - 0} \right] - n\int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \\
\Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = e - n\int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \\
\]
Since, we know \[{P_n} = \int\limits_0^1 {{t^n}.{e^t}dt} \], therefore, replacing n by n-1 we can write\[{P_{n - 1}} = \int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \]. Substituting the value in integration
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = e - n{P_{n - 1}}\]
So we can write \[{P_n} = e - n{P_{n - 1}}\]
We also find the value of \[{P_{n - 1}} = e - (n - 1){P_{n - 2}}\]
Substitute the value of \[{P_{n - 1}}\] in the value of \[{P_n}\]
\[
\Rightarrow {P_n} = e - n[e - (n - 1){P_{n - 2}}] \\
\Rightarrow {P_n} = e - ne + n(n - 1){P_{n - 2}} \\
\]
Now substitute the values of n as 10
\[
\Rightarrow {P_{10}} = e - 10e + 10(10 - 1){P_{10 - 2}} \\
\Rightarrow {P_{10}} = - 9e + 90{P_8} \\
\]
Shift the value of \[90{P_8}\]to LHS
\[{P_{10}} - 90{P_8} = - 9e\]
So, the correct answer is “Option C”.
Note: Students are likely to make mistakes solving the second part of the integration again by using parts integration which is wrong, keep in mind we have to compare the integration to the value of \[{P_n}\] and then transform that part.
*In integration by parts we use the sequence of ILATE (Inverse trigonometric, Logarithms , algebraic, trigonometric , exponential) for choosing the value of \[u,v\] and then substitute in the integration formula of by parts integration.
* If we have \[\int {uvdx} \] then the value of integral is given by \[\int {uvdx = u\int {vdx - \int {u'\left( {\int {vdx} } \right)dx} } } \] where \[u' = \dfrac{{du}}{{dx}}\] is differentiation of \[u\] with respect to \[x\].
Complete step-by-step answer:
We have \[{P_n} = \int\limits_1^e {{{(\log x)}^n}dx} \]
Let us assume \[\log x = t\]
Taking exponential function on both sides of the equation we get,
\[
\Rightarrow {e^{\log x}} = {e^t} \\
\Rightarrow x = {e^t} \\
\] {Since, exponential and log function cancel each other}
Now differentiating both sides with respect to their respective variables we get
\[ \Rightarrow dx = {e^t}dt\]
Also, for the limits of integral
\[\because \log x = t\]
When \[x = 1 \Rightarrow \log 1 = 0\], So \[t = 0\]
When \[x = e \Rightarrow \log e = 1\], So \[t = 1\]
Now we will write the integral in terms of variable t as
\[
\Rightarrow \int\limits_1^e {{{(\log x)}^n}dx} = \int\limits_0^1 {{t^n}.{e^t}dt} \\
\Rightarrow {P_n} = \int\limits_0^1 {{t^n}.{e^t}dt} \\
\]
Now we will solve the integration by using integration by parts.
Looking at the integral \[\int\limits_0^1 {{t^n}.{e^t}dt} \]
Using the ILATE sequence we can tell that the term comes first in the sequence is \[u\] and which comes later is \[v\] i.e. in this case we have the terms exponential and algebraic , first comes the algebraic term then comes the exponential term so \[u\] is \[{t^n}\] and \[v\]is \[{e^t}\]
\[u = {t^n},v = {e^t}\]
Now we calculate the differentiation of the term \[u\]
\[
u' = \dfrac{{du}}{{dt}} \\
u' = \dfrac{{d({t^n})}}{{dt}} \\
u' = n{t^{n - 1}} \\
\]
Now substitute the values in equation \[\int {uvdt = u\int {vdt - \int {u'\left( {\int {vdt} } \right)dt} } } \]
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = {t^n}\int\limits_0^1 {{e^t}dt} - \int\limits_0^1 {(n{t^{n - 1}})\left( {\int {{e^t}dt} } \right)dt} \] \[...(i)\]
Now we know \[\int {{e^t}dt = {e^t}} \]
Therefore substitute the value of\[\int {{e^t}dt = {e^t}} \] in equation \[(i)\]
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = \left[ {{t^n}{e^t}} \right]_0^1 - \int\limits_0^1 {(n{t^{n - 1}}).{e^t}dt} \]
Now we can solve and bring out constant terms from the integral sign.
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = \left[ {{1^n}{e^1} - {0^n}{e^0}} \right] - n\int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \]
Since the value of any number having power zero gives the value one.
\[
\Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = \left[ {1e - 0} \right] - n\int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \\
\Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = e - n\int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \\
\]
Since, we know \[{P_n} = \int\limits_0^1 {{t^n}.{e^t}dt} \], therefore, replacing n by n-1 we can write\[{P_{n - 1}} = \int\limits_0^1 {{t^{n - 1}}.{e^t}dt} \]. Substituting the value in integration
\[ \Rightarrow \int\limits_0^1 {{t^n}.{e^t}dt} = e - n{P_{n - 1}}\]
So we can write \[{P_n} = e - n{P_{n - 1}}\]
We also find the value of \[{P_{n - 1}} = e - (n - 1){P_{n - 2}}\]
Substitute the value of \[{P_{n - 1}}\] in the value of \[{P_n}\]
\[
\Rightarrow {P_n} = e - n[e - (n - 1){P_{n - 2}}] \\
\Rightarrow {P_n} = e - ne + n(n - 1){P_{n - 2}} \\
\]
Now substitute the values of n as 10
\[
\Rightarrow {P_{10}} = e - 10e + 10(10 - 1){P_{10 - 2}} \\
\Rightarrow {P_{10}} = - 9e + 90{P_8} \\
\]
Shift the value of \[90{P_8}\]to LHS
\[{P_{10}} - 90{P_8} = - 9e\]
So, the correct answer is “Option C”.
Note: Students are likely to make mistakes solving the second part of the integration again by using parts integration which is wrong, keep in mind we have to compare the integration to the value of \[{P_n}\] and then transform that part.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE