
If $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ and f}}\left( 0 \right) = 0$, then $f(x)$ is
(a) Continuous at $0$
(b) Right continuous at $0$
(c) Discontinuous at $0$
(d) Left continuous at $0$
Answer
624.3k+ views
Hint- Calculate left hand and right hand limit at the required point where continuity is asked.
We have to comment upon the continuity of $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ }}$at x=0
Let’s calculate the left hand side limit for this $f(x)$
$ \Rightarrow f{(x)_{x \to {0^ - }}} = f{(0 - h)_{h \to 0}} = f{( - h)_{h \to 0}}$
So $f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{{ - 1}}{h}}} - 1}}{{{e^{\dfrac{{ - 1}}{h}}} + 1}}$
We can write this down as
$f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} + 1}}$
Now let’s substitute 0 in place of h we get
$f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} + 1}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $
Putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{\infty } - 1}}{{\dfrac{1}{\infty } + 1}} = \dfrac{{0 - 1}}{{0 + 1}} = - 1$
So the left hand limit is -1, now let’s compute the Right side limit
$ \Rightarrow f{(x)_{x \to {0^ + }}} = f{(0 + h)_{h \to 0}} = f{(h)_{h \to 0}}$
$f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{1}{h}}} - 1}}{{{e^{\dfrac{1}{h}}} + 1}}$
Now we will be taking ${e^{\dfrac{1}{h}}}$ common from the denominator as well as from the numerator
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}$
Now let’s substitute 0 in place of h we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $ putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$
Now clearly the left hand limit at $x = 0$ is not equal to the right hand limit at $x = 0$. Hence given $f(x)$ is discontinuous at $x = 0$
Hence option (c) is correct
Note- Whenever we are told to comment upon the continuity of a given function at a specific point, approach the point first from left side and then from right side if both the limits are equal and it is equal to the value of the function at that point then the function is continuous at that point.
We have to comment upon the continuity of $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ }}$at x=0
Let’s calculate the left hand side limit for this $f(x)$
$ \Rightarrow f{(x)_{x \to {0^ - }}} = f{(0 - h)_{h \to 0}} = f{( - h)_{h \to 0}}$
So $f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{{ - 1}}{h}}} - 1}}{{{e^{\dfrac{{ - 1}}{h}}} + 1}}$
We can write this down as
$f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} + 1}}$
Now let’s substitute 0 in place of h we get
$f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} + 1}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $
Putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{\infty } - 1}}{{\dfrac{1}{\infty } + 1}} = \dfrac{{0 - 1}}{{0 + 1}} = - 1$
So the left hand limit is -1, now let’s compute the Right side limit
$ \Rightarrow f{(x)_{x \to {0^ + }}} = f{(0 + h)_{h \to 0}} = f{(h)_{h \to 0}}$
$f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{1}{h}}} - 1}}{{{e^{\dfrac{1}{h}}} + 1}}$
Now we will be taking ${e^{\dfrac{1}{h}}}$ common from the denominator as well as from the numerator
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}$
Now let’s substitute 0 in place of h we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $ putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$
Now clearly the left hand limit at $x = 0$ is not equal to the right hand limit at $x = 0$. Hence given $f(x)$ is discontinuous at $x = 0$
Hence option (c) is correct
Note- Whenever we are told to comment upon the continuity of a given function at a specific point, approach the point first from left side and then from right side if both the limits are equal and it is equal to the value of the function at that point then the function is continuous at that point.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

