Answer
Verified
498.6k+ views
Hint: In the question use the identities $\sin (A+B)=\sin A\cos B+\cos A\sin B$and $\cos (A+B)=\cos A\cos B-\sin A\sin B$and get the desired result.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE