Answer
Verified
498.6k+ views
Hint: Here the unit matrix is every \[n \times n\] square matrix made of all zeros except for the elements of the main diagonal that are all ones. And the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. With these basic concepts we can solve this problem easily.
Complete step-by-step answer:
Given \[I\] is a unit matrix of order \[2 \times 2\]
i.e., \[I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
The determinant of \[I\] is given by
\[\left| I \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\]
We know that the determinant of matrix \[\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|\] is \[ad - bc\].
By using the above formula,
\[\left| I \right| = \left( 1 \right)\left( 1 \right) - \left( 0 \right)\left( 0 \right) = 1 - 0 = 1\]
Thus, the value of \[\left| I \right| = 1\].
Note: In this problem “\[\left| {} \right|\]” denotes the determinant of a matrix. A unit matrix is always a square matrix and the number of rows and number of columns are always equal. The determinant of a unitary matrix is always equal to 1.
Complete step-by-step answer:
Given \[I\] is a unit matrix of order \[2 \times 2\]
i.e., \[I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
The determinant of \[I\] is given by
\[\left| I \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\]
We know that the determinant of matrix \[\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|\] is \[ad - bc\].
By using the above formula,
\[\left| I \right| = \left( 1 \right)\left( 1 \right) - \left( 0 \right)\left( 0 \right) = 1 - 0 = 1\]
Thus, the value of \[\left| I \right| = 1\].
Note: In this problem “\[\left| {} \right|\]” denotes the determinant of a matrix. A unit matrix is always a square matrix and the number of rows and number of columns are always equal. The determinant of a unitary matrix is always equal to 1.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE