
If \[I\] is a unit matrix of order \[2 \times 2\] then write down the value of \[\left| I \right|\].
Answer
620.7k+ views
Hint: Here the unit matrix is every \[n \times n\] square matrix made of all zeros except for the elements of the main diagonal that are all ones. And the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. With these basic concepts we can solve this problem easily.
Complete step-by-step answer:
Given \[I\] is a unit matrix of order \[2 \times 2\]
i.e., \[I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
The determinant of \[I\] is given by
\[\left| I \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\]
We know that the determinant of matrix \[\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|\] is \[ad - bc\].
By using the above formula,
\[\left| I \right| = \left( 1 \right)\left( 1 \right) - \left( 0 \right)\left( 0 \right) = 1 - 0 = 1\]
Thus, the value of \[\left| I \right| = 1\].
Note: In this problem “\[\left| {} \right|\]” denotes the determinant of a matrix. A unit matrix is always a square matrix and the number of rows and number of columns are always equal. The determinant of a unitary matrix is always equal to 1.
Complete step-by-step answer:
Given \[I\] is a unit matrix of order \[2 \times 2\]
i.e., \[I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
The determinant of \[I\] is given by
\[\left| I \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\]
We know that the determinant of matrix \[\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|\] is \[ad - bc\].
By using the above formula,
\[\left| I \right| = \left( 1 \right)\left( 1 \right) - \left( 0 \right)\left( 0 \right) = 1 - 0 = 1\]
Thus, the value of \[\left| I \right| = 1\].
Note: In this problem “\[\left| {} \right|\]” denotes the determinant of a matrix. A unit matrix is always a square matrix and the number of rows and number of columns are always equal. The determinant of a unitary matrix is always equal to 1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

