Answer
Verified
449.4k+ views
Hint:
Assuming x to the distance and using the relation ${\text{time = }}\dfrac{{{\text{distance}}}}{{{\text{speed}}}}$we get the time as $T = \left( {\dfrac{x}{3} + \dfrac{2}{{60}}} \right)$when I walk at a speed of 3 km/hr and $T = \left( {\dfrac{x}{4} - \dfrac{2}{{60}}} \right)$ when I walk at a speed of 4 km/hr and equating these both we get the value of x.
Complete step by step solution:
Let x be the distance which I walk to reach the station
We know that ${\text{time = }}\dfrac{{{\text{distance}}}}{{{\text{speed}}}}$
Therefore when I walk at a speed of 3 km/hr I reach the station 2 minutes late
$ \Rightarrow T = \left( {\dfrac{x}{3} + \dfrac{2}{{60}}} \right)$ ……….(1)
Here the extra 2 minutes is written as $\dfrac{2}{{60}}$because our calculation in done in terms of hours so we convert minutes to hours by dividing it by 60
Here we add the two minutes as I take two minutes extra (in addition )
Therefore when I walk at a speed of 4 km/hr I reach the station 2 minutes early
$ \Rightarrow T = \left( {\dfrac{x}{4} - \dfrac{2}{{60}}} \right)$ ……….(2)
Here we subtract the two minutes as I reach 2 minutes earlier
Equating (1) and (2)
$
\Rightarrow \left( {\dfrac{x}{3} + \dfrac{2}{{60}}} \right) = \left( {\dfrac{x}{4} - \dfrac{2}{{60}}} \right) \\
\Rightarrow \dfrac{x}{3} - \dfrac{x}{4} = \dfrac{{ - 1}}{{30}} - \dfrac{1}{{30}} \\
\Rightarrow \dfrac{{4x - 3x}}{{12}} = \dfrac{{ - 2}}{{30}} \\
\Rightarrow \dfrac{x}{{12}} = \dfrac{{ - 1}}{{15}} \\
\Rightarrow x = \dfrac{{ - 12}}{{15}} = \dfrac{{ - 4}}{5}km \\
$
Since distance cannot be negative
$ \Rightarrow x = \dfrac{4}{5}km$
The correct option is c.
Note:
If distance travelled for each part of the journey,
Ie ${d_1} = {d_2} = .... = {d_n} = d$, then the average speed of the object is Harmonic Mean of speeds.
Let each distance be covered with speeds ${s_1},{s_2},...,{s_n}{\text{ in }}{t_1},{t_2},...,{t_n}$ times respectively.
Then ${t_1} = \dfrac{d}{{{s_1}}},{t_2} = \dfrac{d}{{{s_2}}},...,{t_n} = \dfrac{d}{{{s_n}}}$
Assuming x to the distance and using the relation ${\text{time = }}\dfrac{{{\text{distance}}}}{{{\text{speed}}}}$we get the time as $T = \left( {\dfrac{x}{3} + \dfrac{2}{{60}}} \right)$when I walk at a speed of 3 km/hr and $T = \left( {\dfrac{x}{4} - \dfrac{2}{{60}}} \right)$ when I walk at a speed of 4 km/hr and equating these both we get the value of x.
Complete step by step solution:
Let x be the distance which I walk to reach the station
We know that ${\text{time = }}\dfrac{{{\text{distance}}}}{{{\text{speed}}}}$
Therefore when I walk at a speed of 3 km/hr I reach the station 2 minutes late
$ \Rightarrow T = \left( {\dfrac{x}{3} + \dfrac{2}{{60}}} \right)$ ……….(1)
Here the extra 2 minutes is written as $\dfrac{2}{{60}}$because our calculation in done in terms of hours so we convert minutes to hours by dividing it by 60
Here we add the two minutes as I take two minutes extra (in addition )
Therefore when I walk at a speed of 4 km/hr I reach the station 2 minutes early
$ \Rightarrow T = \left( {\dfrac{x}{4} - \dfrac{2}{{60}}} \right)$ ……….(2)
Here we subtract the two minutes as I reach 2 minutes earlier
Equating (1) and (2)
$
\Rightarrow \left( {\dfrac{x}{3} + \dfrac{2}{{60}}} \right) = \left( {\dfrac{x}{4} - \dfrac{2}{{60}}} \right) \\
\Rightarrow \dfrac{x}{3} - \dfrac{x}{4} = \dfrac{{ - 1}}{{30}} - \dfrac{1}{{30}} \\
\Rightarrow \dfrac{{4x - 3x}}{{12}} = \dfrac{{ - 2}}{{30}} \\
\Rightarrow \dfrac{x}{{12}} = \dfrac{{ - 1}}{{15}} \\
\Rightarrow x = \dfrac{{ - 12}}{{15}} = \dfrac{{ - 4}}{5}km \\
$
Since distance cannot be negative
$ \Rightarrow x = \dfrac{4}{5}km$
The correct option is c.
Note:
If distance travelled for each part of the journey,
Ie ${d_1} = {d_2} = .... = {d_n} = d$, then the average speed of the object is Harmonic Mean of speeds.
Let each distance be covered with speeds ${s_1},{s_2},...,{s_n}{\text{ in }}{t_1},{t_2},...,{t_n}$ times respectively.
Then ${t_1} = \dfrac{d}{{{s_1}}},{t_2} = \dfrac{d}{{{s_2}}},...,{t_n} = \dfrac{d}{{{s_n}}}$
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE