
If $\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}$. Then $f\left( x \right)$ is
A.$\sec x+x\tan x+\dfrac{1}{2}$
B.$x\sec x+x\tan x+\dfrac{1}{2}$
C.$x\sec x+{{x}^{2}}\tan x+\dfrac{1}{2}$
D.$\sec x+\tan x-x+\dfrac{1}{2}$
Answer
453.3k+ views
Hint: We are given a function which consists of multiple trigonometric functions. First we will differentiate the given equation which would help us to simplify our equation and get rid of ${{e}^{\sec x}}$. Then, we will find the anti-derivative or integral of the equation thus obtained to transform ${f}'\left( x \right)$ to $f\left( x \right)$.
Complete step by step solution:
We are given the equation $\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}$.
Differentiating both sides, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx} \right\}=\dfrac{d}{dx}\left( {{e}^{\sec x}}f\left( x \right)+c \right)\]
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\sec x\tan xf\left( x \right)+{{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
\end{align}\]
Cancelling \[{{e}^{\sec x}}\sec x\tan xf\left( x \right)\] from both sides, we get
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right) \\
\end{align}\]
Now, dividing both sides by ${{e}^{\sec x}}$, we get
\[\Rightarrow \sec x\tan x+{{\tan }^{2}}x={f}'\left( x \right)\]
Here, in order to find $f\left( x \right)$, we shall calculate the antiderivative or the integral of ${f}'\left( x \right)$.
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\left( \sec x\tan x+{{\tan }^{2}}x \right).dx}} \\
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\sec x\tan x.dx}}+\int{{{\tan }^{2}}x.dx} \\
\end{align}\]
We shall calculate these two integrals individually and then combine them to find our final result.
Since, $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$ ,
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}.dx} \\
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{\sin x}{{{\left( \cos x \right)}^{2}}}.dx} \\
\end{align}\]
Performing simple substitution, we see that if $t=\cos x$.
Then, $dt=-\sin x.dx$
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{{{\left( t \right)}^{2}}}.-dt} \\
& \Rightarrow \int{\sec x\tan x.dx}=-\int{{{t}^{-2}}dt} \\
\end{align}\]
Using the property of integration, $\int{{{x}^{n}}.dx=}\dfrac{{{x}^{n+1}}}{n+1}+C$, we get
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=-\dfrac{{{t}^{-2+1}}}{-2+1}+C \\
& \Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{t}+C \\
\end{align}\]
Substituting the value of $t=\cos x$, we get
\[\Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{\cos x}+C\]
\[\Rightarrow \int{\sec x\tan x.dx}=\sec x+C\] …………………. (1)
Also, we know that ${{\tan }^{2}}x={{\sec }^{2}}x-1$, substituting this value, we get
\[\begin{align}
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{\left( {{\sec }^{2}}x-1 \right)}.dx \\
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{{{\sec }^{2}}x.dx}-\int{1.dx} \\
\end{align}\]
Using the property of integration, $\int{{{\sec }^{2}}.dx=}\tan x+C$ as well as $\int{1.dx=x+C}$ , we get\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x+C-x+C\]
\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x-x+C\] ………………….. (2)
Combining (1) and (2), we get
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\left( \sec x+C \right)}+\left( \tan x-x+C \right) \\
& \Rightarrow f\left( x \right)+C=\sec x+\tan x-x+C \\
\end{align}\]
\[\Rightarrow f\left( x \right)=\sec x+\tan x-x+C\]
We shall now compare the calculated value of f(x) with the options given in the problem and we find that it best matches option (D).
Therefore, the correct option is (D) $\sec x+\tan x-x+\dfrac{1}{2}$.
Note:
While performing indefinite integration, we must take special care about adding the constant of integration, C to our answer of integral. If we substitute the values of any point lying on a particular curve, then we can calculate the exact value of this constant of integration and hence, the general equation transforms into the equation of that particular curve only.
Complete step by step solution:
We are given the equation $\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}$.
Differentiating both sides, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx} \right\}=\dfrac{d}{dx}\left( {{e}^{\sec x}}f\left( x \right)+c \right)\]
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\sec x\tan xf\left( x \right)+{{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
\end{align}\]
Cancelling \[{{e}^{\sec x}}\sec x\tan xf\left( x \right)\] from both sides, we get
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right) \\
\end{align}\]
Now, dividing both sides by ${{e}^{\sec x}}$, we get
\[\Rightarrow \sec x\tan x+{{\tan }^{2}}x={f}'\left( x \right)\]
Here, in order to find $f\left( x \right)$, we shall calculate the antiderivative or the integral of ${f}'\left( x \right)$.
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\left( \sec x\tan x+{{\tan }^{2}}x \right).dx}} \\
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\sec x\tan x.dx}}+\int{{{\tan }^{2}}x.dx} \\
\end{align}\]
We shall calculate these two integrals individually and then combine them to find our final result.
Since, $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$ ,
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}.dx} \\
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{\sin x}{{{\left( \cos x \right)}^{2}}}.dx} \\
\end{align}\]
Performing simple substitution, we see that if $t=\cos x$.
Then, $dt=-\sin x.dx$
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{{{\left( t \right)}^{2}}}.-dt} \\
& \Rightarrow \int{\sec x\tan x.dx}=-\int{{{t}^{-2}}dt} \\
\end{align}\]
Using the property of integration, $\int{{{x}^{n}}.dx=}\dfrac{{{x}^{n+1}}}{n+1}+C$, we get
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=-\dfrac{{{t}^{-2+1}}}{-2+1}+C \\
& \Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{t}+C \\
\end{align}\]
Substituting the value of $t=\cos x$, we get
\[\Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{\cos x}+C\]
\[\Rightarrow \int{\sec x\tan x.dx}=\sec x+C\] …………………. (1)
Also, we know that ${{\tan }^{2}}x={{\sec }^{2}}x-1$, substituting this value, we get
\[\begin{align}
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{\left( {{\sec }^{2}}x-1 \right)}.dx \\
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{{{\sec }^{2}}x.dx}-\int{1.dx} \\
\end{align}\]
Using the property of integration, $\int{{{\sec }^{2}}.dx=}\tan x+C$ as well as $\int{1.dx=x+C}$ , we get\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x+C-x+C\]
\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x-x+C\] ………………….. (2)
Combining (1) and (2), we get
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\left( \sec x+C \right)}+\left( \tan x-x+C \right) \\
& \Rightarrow f\left( x \right)+C=\sec x+\tan x-x+C \\
\end{align}\]
\[\Rightarrow f\left( x \right)=\sec x+\tan x-x+C\]
We shall now compare the calculated value of f(x) with the options given in the problem and we find that it best matches option (D).
Therefore, the correct option is (D) $\sec x+\tan x-x+\dfrac{1}{2}$.
Note:
While performing indefinite integration, we must take special care about adding the constant of integration, C to our answer of integral. If we substitute the values of any point lying on a particular curve, then we can calculate the exact value of this constant of integration and hence, the general equation transforms into the equation of that particular curve only.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
