Answer
Verified
431.4k+ views
Hint: We know that some acids such as oxalic acid, sulphuric acid etc. have more than one ionizable proton per molecule of the acid. These acids are known as polybasic acids. These acids will ionize or dissociate in more than one step. Phosphoric acid $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)$ is a polybasic acid.
Complete step by step answer:
(i) Given that first $\left( {K{a_1}} \right)$, second $\left( {\,K{a_2}\,} \right)$ and third ionization constant of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}$ are ${10^{ - 3}}$ , ${10^{ - 8}}$ and ${10^{ - 12}}$ respectively.
First dissociation reaction is,
\[{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)^ - }\,,\,K{a_1} = {10^{ - 3}}\]…… (1)
Second dissociation reaction is,
${\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}}\right)^-}\rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{2 - }},K{a_2} = {10^{ - 8}}$….. (2)
Third dissociation constant is,
${\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{- 2}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{P}}{{\text{O}}_{\text{4}}}} \right)^{ - 3}},K{a_3} = {10^{ - 12}}$…… (3)
From equation (2), we get to know that dissociation constant of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$.
(ii) For a reaction, $Ka$ is calculated for conjugate acid and ${K_b}$ is calculated for conjugate base. To calculate ${K_b}$, we have to use the below formula.
${K_w} = Ka \times {K_b}$
Here, ${K_w}$ is ionization constant of water, $Ka$ is ionization constant and ${K_b}$ is basic constant.
Given that $Ka$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 8}}}} = {10^{ - 6}}$
Therefore, ${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 6}}$.
(iii) Now we have to calculate the ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $
as in part (ii).
Given that $Ka$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 3}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 3}}}} = {10^{ - 11}}$
Therefore, ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 11}}$.
(iv) So, from the above calculation we calculated that,
${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ $\left( {{K_b}_{_1}} \right)$
is ${10^{ - 11}}$
${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$$\left( {{K_b}_{_2}} \right)$ is ${10^{ - 6}}$
Now, we have calculate the ${K_b}$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{3 - }$ $\left( {{K_b}_{_3}} \right)$.
Given that $Ka$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{ - 3}$ is ${10^{ - 12}}$
and ${K_w} = {10^{ - 14}}$
$ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 12}}}} = {10^{ - 2}}$
So, the value of $K{b_3} = {10^{ - 2}}$
${K_b}_{_3} > {k_b}_{_2} > {k_b}_{_1}$
Note: It is to be noted that it is always difficult to remove a positively charged species (proton) from a negatively charged ions as compared to a neutral molecule because of the strong electrostatic force of attraction between proton and the anion with which it is present. As a result, the removal of proton from a monovalent anion is quite difficult and is even more difficult to remove the same from a divalent anion. Thus, the order of dissociation constants can be justified.
Complete step by step answer:
(i) Given that first $\left( {K{a_1}} \right)$, second $\left( {\,K{a_2}\,} \right)$ and third ionization constant of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}$ are ${10^{ - 3}}$ , ${10^{ - 8}}$ and ${10^{ - 12}}$ respectively.
First dissociation reaction is,
\[{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)^ - }\,,\,K{a_1} = {10^{ - 3}}\]…… (1)
Second dissociation reaction is,
${\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}}\right)^-}\rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{2 - }},K{a_2} = {10^{ - 8}}$….. (2)
Third dissociation constant is,
${\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{- 2}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{P}}{{\text{O}}_{\text{4}}}} \right)^{ - 3}},K{a_3} = {10^{ - 12}}$…… (3)
From equation (2), we get to know that dissociation constant of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$.
(ii) For a reaction, $Ka$ is calculated for conjugate acid and ${K_b}$ is calculated for conjugate base. To calculate ${K_b}$, we have to use the below formula.
${K_w} = Ka \times {K_b}$
Here, ${K_w}$ is ionization constant of water, $Ka$ is ionization constant and ${K_b}$ is basic constant.
Given that $Ka$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 8}}}} = {10^{ - 6}}$
Therefore, ${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 6}}$.
(iii) Now we have to calculate the ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $
as in part (ii).
Given that $Ka$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 3}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 3}}}} = {10^{ - 11}}$
Therefore, ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 11}}$.
(iv) So, from the above calculation we calculated that,
${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ $\left( {{K_b}_{_1}} \right)$
is ${10^{ - 11}}$
${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$$\left( {{K_b}_{_2}} \right)$ is ${10^{ - 6}}$
Now, we have calculate the ${K_b}$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{3 - }$ $\left( {{K_b}_{_3}} \right)$.
Given that $Ka$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{ - 3}$ is ${10^{ - 12}}$
and ${K_w} = {10^{ - 14}}$
$ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 12}}}} = {10^{ - 2}}$
So, the value of $K{b_3} = {10^{ - 2}}$
${K_b}_{_3} > {k_b}_{_2} > {k_b}_{_1}$
Note: It is to be noted that it is always difficult to remove a positively charged species (proton) from a negatively charged ions as compared to a neutral molecule because of the strong electrostatic force of attraction between proton and the anion with which it is present. As a result, the removal of proton from a monovalent anion is quite difficult and is even more difficult to remove the same from a divalent anion. Thus, the order of dissociation constants can be justified.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE