
If $ {\left( {x + iy} \right)^5} = p + iq $ , then prove that $ {\left( {y + ix} \right)^5} = q + ip. $
Answer
515.1k+ views
Hint: The complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if $ a $ and $ b $ are real, then) the then the complex conjugate of $ \left( {a + bi} \right) $ is equal to $ \left( {a - bi} \right) $ .
Complete step-by-step answer:
Given equation in the question is,
$ \Rightarrow $ $ {\left( {x + iy} \right)^5} = p + iq $
We can write it as,
$
\Rightarrow \dfrac{1}{{{{\left( {x + iy} \right)}^5}}} = \dfrac{1}{{(p + iq)}} \\
\Rightarrow \dfrac{1}{{{{(x + iy)}^5}}} = p - iq \\
\Rightarrow {\left( {x - iy} \right)^5} = p - iq \;
$
Multiply by $ {i^5} $ on both the sides,
$
\Rightarrow {i^5}{(x - iy)^5} = p{i^5} - q{i^6} \\
\Rightarrow {(x{i^{}} - {i^2}y)^5} = pi + q \\
\Rightarrow {(y + ix)^5} = pi + q. \;
$
Hence proved.
Note: $ \Rightarrow $ Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite sign.
$ \Rightarrow $ Conjugate of the conjugate of a complex number $ Z $ is the complex number itself.
$ \Rightarrow $ Conjugate of the sum of two complex numbers $ {z_1},{z_2} $ is the sum of their conjugates.
\[\overline {z_1 + z_2} = \bar z_1 + \bar z_2.\]
Complete step-by-step answer:
Given equation in the question is,
$ \Rightarrow $ $ {\left( {x + iy} \right)^5} = p + iq $
We can write it as,
$
\Rightarrow \dfrac{1}{{{{\left( {x + iy} \right)}^5}}} = \dfrac{1}{{(p + iq)}} \\
\Rightarrow \dfrac{1}{{{{(x + iy)}^5}}} = p - iq \\
\Rightarrow {\left( {x - iy} \right)^5} = p - iq \;
$
Multiply by $ {i^5} $ on both the sides,
$
\Rightarrow {i^5}{(x - iy)^5} = p{i^5} - q{i^6} \\
\Rightarrow {(x{i^{}} - {i^2}y)^5} = pi + q \\
\Rightarrow {(y + ix)^5} = pi + q. \;
$
Hence proved.
Note: $ \Rightarrow $ Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite sign.
$ \Rightarrow $ Conjugate of the conjugate of a complex number $ Z $ is the complex number itself.
$ \Rightarrow $ Conjugate of the sum of two complex numbers $ {z_1},{z_2} $ is the sum of their conjugates.
\[\overline {z_1 + z_2} = \bar z_1 + \bar z_2.\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

