Answer
Verified
479.1k+ views
Hint: $\left[ x \right]$ donates the integral part x for real values of x mean that if $x=n+f$ where f is the fractional part and n is the integral part.
$\left[ x \right]=n$
For example $\left[ 1.5 \right]=1$
For $0\le x<1\text{ }\left[ x \right]=0$
.And \[1\le x<2\text{ }\left[ x \right]=1\text{ }............\text{ and so on }......\].
Complete step-by-step answer:
\[\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right].................\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]=10a\]now we have,
\[\left[ \dfrac{1}{4}+\dfrac{3}{4} \right]=1\Rightarrow \left[ \dfrac{1}{4}+\dfrac{150}{200} \right]=1\]
Similarly, \[\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]=\left[ 1.005 \right]=1\]
So we can write nth term of the series in the form \[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ 0}\le \text{m}\le 199\text{ m}\varepsilon \text{N}\]
Here, when \[m<150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 0}\] because \[\dfrac{1}{4}+\dfrac{m}{200}<1\]
When \[m>150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 1}\] as \[1\le \dfrac{1}{4}+\dfrac{M}{200}<2\]
So $\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+..............\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]+..........+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]\Rightarrow $
$=0+0+0.............+1+1+........1$
$=50$ as then will be $50$term form $\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]$ to $\left[ \dfrac{1}{4}+\dfrac{191}{200} \right]$
But it is given that the sum of above term is $10a$
$10a=50$
$\Rightarrow a=5$
Note: Thus one certain properties of $\left[ x \right]$where it donates the integral part of x
$\left[ {{x}_{1}} \right]+\left[ {{x}_{2}} \right]\ne \left[ {{x}_{1}}+{{x}_{2}} \right]$
For example: ${{x}_{1}}=1.5$
${{x}_{2}}=2.5$
$\left[ {{x}_{1}} \right]=\left[ 1.5 \right]=1$
$\left[ {{x}_{2}} \right]=\left[ 2.5 \right]=2$
$\left[ {{x}_{1}}+{{x}_{2}} \right]=3$
But $\left[ {{x}_{1}}+{{x}_{2}} \right]=\left[ 1.5+2.5 \right]=4$
Hence it does not follow $f(a)+f(6)=f(a+6)$
$\therefore $ it is not a function.
$\left[ x \right]=n$
For example $\left[ 1.5 \right]=1$
For $0\le x<1\text{ }\left[ x \right]=0$
.And \[1\le x<2\text{ }\left[ x \right]=1\text{ }............\text{ and so on }......\].
Complete step-by-step answer:
\[\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right].................\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]=10a\]now we have,
\[\left[ \dfrac{1}{4}+\dfrac{3}{4} \right]=1\Rightarrow \left[ \dfrac{1}{4}+\dfrac{150}{200} \right]=1\]
Similarly, \[\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]=\left[ 1.005 \right]=1\]
So we can write nth term of the series in the form \[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ 0}\le \text{m}\le 199\text{ m}\varepsilon \text{N}\]
Here, when \[m<150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 0}\] because \[\dfrac{1}{4}+\dfrac{m}{200}<1\]
When \[m>150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 1}\] as \[1\le \dfrac{1}{4}+\dfrac{M}{200}<2\]
So $\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+..............\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]+..........+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]\Rightarrow $
$=0+0+0.............+1+1+........1$
$=50$ as then will be $50$term form $\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]$ to $\left[ \dfrac{1}{4}+\dfrac{191}{200} \right]$
But it is given that the sum of above term is $10a$
$10a=50$
$\Rightarrow a=5$
Note: Thus one certain properties of $\left[ x \right]$where it donates the integral part of x
$\left[ {{x}_{1}} \right]+\left[ {{x}_{2}} \right]\ne \left[ {{x}_{1}}+{{x}_{2}} \right]$
For example: ${{x}_{1}}=1.5$
${{x}_{2}}=2.5$
$\left[ {{x}_{1}} \right]=\left[ 1.5 \right]=1$
$\left[ {{x}_{2}} \right]=\left[ 2.5 \right]=2$
$\left[ {{x}_{1}}+{{x}_{2}} \right]=3$
But $\left[ {{x}_{1}}+{{x}_{2}} \right]=\left[ 1.5+2.5 \right]=4$
Hence it does not follow $f(a)+f(6)=f(a+6)$
$\therefore $ it is not a function.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE