Answer
Verified
451.2k+ views
Hint: Here, we need to find the nature of roots of the given quadratic equation. We will use the formula for discriminant of a quadratic equation to find the discriminant of the given equation. Then we will use the property of discriminant to find the nature of roots of the given equation.
Formula Used:
We will use the formula of the discriminant of a quadratic equation of the form \[a{x^2} + bx + c = 0\] is given by \[D = {b^2} - 4ac\].
Complete step-by-step answer:
We need to find the nature of roots of the given quadratic equation.
We will use the formula for discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] to find the nature of the roots.
Comparing the equations \[\left( {l - m} \right){x^2} - 5\left( {l + m} \right)x - 2\left( {l - m} \right) = 0\] and \[a{x^2} + bx + c = 0\], we get
\[a = l - m\], \[b = - 5\left( {l + m} \right)\], and \[c = - 2\left( {l - m} \right)\]
Substituting \[a = l - m\], \[b = - 5\left( {l + m} \right)\], and \[c = - 2\left( {l - m} \right)\] in the formula \[D = {b^2} - 4ac\], we get
\[ \Rightarrow D = {\left[ { - 5\left( {l + m} \right)} \right]^2} - 4\left( {l - m} \right)\left[ { - 2\left( {l - m} \right)} \right]\]
Simplifying the expression, we get
\[ \Rightarrow D = 25{\left( {l + m} \right)^2} + 8{\left( {l - m} \right)^2}\]
We need to check whether this discriminant is more than 0, less than 0, or equal to 0.
It is given that \[l \ne m\].
Therefore, \[l - m \ne 0\].
We know that the square of any real number is always positive.
Therefore, we get
$\Rightarrow$ \[{\left( {l + m} \right)^2} > 0\]
Multiplying both sides by 25, we get
$\Rightarrow$ \[25{\left( {l + m} \right)^2} > 0\]
Since \[l - m\] is not equal to zero, the square of \[l - m\] is always positive.
Therefore, we get
$\Rightarrow$ \[{\left( {l - m} \right)^2} > 0\]
Multiplying both sides by 8, we get
$\Rightarrow$ \[8{\left( {l - m} \right)^2} > 0\]
Now, we can observe that \[25{\left( {l + m} \right)^2} > 0\] and \[8{\left( {l - m} \right)^2} > 0\].
Therefore, we can say that
$\Rightarrow$ \[25{\left( {l + m} \right)^2} + 8{\left( {l - m} \right)^2} > 0\]
Substituting \[D = 25{\left( {l + m} \right)^2} + 8{\left( {l - m} \right)^2}\] in the inequation, we get
\[ \Rightarrow D > 0\]
Thus, the discriminant of the equation $\Rightarrow$ \[\left( {l - m} \right){x^2} - 5\left( {l + m} \right)x - 2\left( {l - m} \right) = 0\] is greater than 0.
Therefore, the roots of the equation $\Rightarrow$ \[\left( {l - m} \right){x^2} - 5\left( {l + m} \right)x - 2\left( {l - m} \right) = 0\] are real and unequal.
Thus, the correct option is option (c).
Note: We used the term “quadratic equation” in our solution. A quadratic equation is an equation that has the highest degree of 2. It is of the form \[a{x^2} + bx + c = 0\], where \[a\] is not equal to 0. A quadratic equation has 2 solutions. We can find the nature of the root using the following properties of discriminant:
If \[D > 0\], then the roots of the quadratic equation are real and unequal.
If \[D = 0\], then the roots of the quadratic equation are real and equal.
If \[D < 0\], then the roots of the quadratic equation are not real, that is complex.
Formula Used:
We will use the formula of the discriminant of a quadratic equation of the form \[a{x^2} + bx + c = 0\] is given by \[D = {b^2} - 4ac\].
Complete step-by-step answer:
We need to find the nature of roots of the given quadratic equation.
We will use the formula for discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] to find the nature of the roots.
Comparing the equations \[\left( {l - m} \right){x^2} - 5\left( {l + m} \right)x - 2\left( {l - m} \right) = 0\] and \[a{x^2} + bx + c = 0\], we get
\[a = l - m\], \[b = - 5\left( {l + m} \right)\], and \[c = - 2\left( {l - m} \right)\]
Substituting \[a = l - m\], \[b = - 5\left( {l + m} \right)\], and \[c = - 2\left( {l - m} \right)\] in the formula \[D = {b^2} - 4ac\], we get
\[ \Rightarrow D = {\left[ { - 5\left( {l + m} \right)} \right]^2} - 4\left( {l - m} \right)\left[ { - 2\left( {l - m} \right)} \right]\]
Simplifying the expression, we get
\[ \Rightarrow D = 25{\left( {l + m} \right)^2} + 8{\left( {l - m} \right)^2}\]
We need to check whether this discriminant is more than 0, less than 0, or equal to 0.
It is given that \[l \ne m\].
Therefore, \[l - m \ne 0\].
We know that the square of any real number is always positive.
Therefore, we get
$\Rightarrow$ \[{\left( {l + m} \right)^2} > 0\]
Multiplying both sides by 25, we get
$\Rightarrow$ \[25{\left( {l + m} \right)^2} > 0\]
Since \[l - m\] is not equal to zero, the square of \[l - m\] is always positive.
Therefore, we get
$\Rightarrow$ \[{\left( {l - m} \right)^2} > 0\]
Multiplying both sides by 8, we get
$\Rightarrow$ \[8{\left( {l - m} \right)^2} > 0\]
Now, we can observe that \[25{\left( {l + m} \right)^2} > 0\] and \[8{\left( {l - m} \right)^2} > 0\].
Therefore, we can say that
$\Rightarrow$ \[25{\left( {l + m} \right)^2} + 8{\left( {l - m} \right)^2} > 0\]
Substituting \[D = 25{\left( {l + m} \right)^2} + 8{\left( {l - m} \right)^2}\] in the inequation, we get
\[ \Rightarrow D > 0\]
Thus, the discriminant of the equation $\Rightarrow$ \[\left( {l - m} \right){x^2} - 5\left( {l + m} \right)x - 2\left( {l - m} \right) = 0\] is greater than 0.
Therefore, the roots of the equation $\Rightarrow$ \[\left( {l - m} \right){x^2} - 5\left( {l + m} \right)x - 2\left( {l - m} \right) = 0\] are real and unequal.
Thus, the correct option is option (c).
Note: We used the term “quadratic equation” in our solution. A quadratic equation is an equation that has the highest degree of 2. It is of the form \[a{x^2} + bx + c = 0\], where \[a\] is not equal to 0. A quadratic equation has 2 solutions. We can find the nature of the root using the following properties of discriminant:
If \[D > 0\], then the roots of the quadratic equation are real and unequal.
If \[D = 0\], then the roots of the quadratic equation are real and equal.
If \[D < 0\], then the roots of the quadratic equation are not real, that is complex.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE