Answer
Verified
470.1k+ views
Hint: We know that ${\log _e} a = k$ can also be written as$a = {e^k}$ So use this formula to solve given function and take their ratios to find the value of x. Put the value of x in ${\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right)$ and simplify to get the answer.
Complete step by step answer:
Given that ${\log _{175}}5{\text{x = lo}}{{\text{g}}_{343}}7x$ --- (i)
Let eq. (i) be equal to a constant k, then
$ \Rightarrow {\log _{175}}5{\text{x = lo}}{{\text{g}}_{343}}7x = k$
We have to find the value of ${\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right)$.
Now we know that ${\log _e}a = k$ can also be written as $a = {e^k}$ so using this we get,
$ \Rightarrow {\log _{175}}5{\text{x = k}} \Rightarrow {\text{5x = 17}}{{\text{5}}^k}$ --- (ii)
And \[\; \Rightarrow {\text{lo}}{{\text{g}}_{343}}7x = k \Rightarrow 7x = {343^k}\] --- (iii)
On taking the ratio of eq. (ii) and (iii), we get
$ \Rightarrow \dfrac{{5x}}{{7x}} = \dfrac{{{{175}^k}}}{{{{343}^k}}}$
On canceling x we get,
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{175}}{{343}}} \right)^k}$
Now we can break $175$ and $343$ into factors. We can write $175 = 5 \times 5 \times 7$ and $343 = 7 \times 7 \times 7$.
On putting these factors in the equation we get,
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{5 \times 5 \times 7}}{{7 \times 7 \times 7}}} \right)^k}$
On cancelling $7$ from numerator and denominator, we get-
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{5 \times 5}}{{7 \times 7}}} \right)^k}$
We can also write it as-
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{{5^2}}}{{{7^2}}}} \right)^k}$
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{5}{7}} \right)^{2k}}$
Since the given ratios are equal then powers of the given ratios will also be equal.
$ \Rightarrow 1 = 2k$
On transferring $2$ from right to left we get,
$ \Rightarrow \dfrac{1}{2} = k$
Now we know the value of k. So on putting this value in eq. (ii) we get,
$ \Rightarrow 5x = {175^{\dfrac{1}{2}}}$
We can write$175 = 5 \times 5 \times 7$ then we get,
$ \Rightarrow 5x = {\left( {5 \times 5 \times 7} \right)^{\dfrac{1}{2}}}$
$ \Rightarrow 5x = {\left( {{5^2} \times 7} \right)^{\dfrac{1}{2}}}$
On simplifying we get,
$ \Rightarrow 5x = 5\sqrt 7 \Rightarrow x = \sqrt 7 $
Now we know the value of x. On putting the value of x in ${\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right)$, we get
$ \Rightarrow {\log _{42}}\left( {{{\left( {{7^{\dfrac{1}{2}}}} \right)}^4} - 2{{\left( {{7^{\dfrac{1}{2}}}} \right)}^2} + 7} \right)$
On simplifying we get,
$ \Rightarrow {\log _{42}}\left( {{7^2} - 2 \times 7 + 7} \right)$
$ \Rightarrow {\log _{42}}\left( {49 - 14 + 7} \right)$
$ \Rightarrow {\log _{42}}\left( {35 + 7} \right)$
$ \Rightarrow {\log _{42}}42$
We know that ${\log _e}e = 1$ then
$ \Rightarrow {\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right) = 1$
Hence, the correct option is ‘A’.
Note: John Napier introduced the concept of logarithms which was later used by scientists and engineers to make the calculations simple. The logarithm is inverse of the exponential. It is used in surveying and celestial navigation. It is used to measure the loudness of sound in decibels, the intensity of the earthquake, and in radioactive decay. Remember that if bases are equal exponents will also be equal.
Complete step by step answer:
Given that ${\log _{175}}5{\text{x = lo}}{{\text{g}}_{343}}7x$ --- (i)
Let eq. (i) be equal to a constant k, then
$ \Rightarrow {\log _{175}}5{\text{x = lo}}{{\text{g}}_{343}}7x = k$
We have to find the value of ${\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right)$.
Now we know that ${\log _e}a = k$ can also be written as $a = {e^k}$ so using this we get,
$ \Rightarrow {\log _{175}}5{\text{x = k}} \Rightarrow {\text{5x = 17}}{{\text{5}}^k}$ --- (ii)
And \[\; \Rightarrow {\text{lo}}{{\text{g}}_{343}}7x = k \Rightarrow 7x = {343^k}\] --- (iii)
On taking the ratio of eq. (ii) and (iii), we get
$ \Rightarrow \dfrac{{5x}}{{7x}} = \dfrac{{{{175}^k}}}{{{{343}^k}}}$
On canceling x we get,
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{175}}{{343}}} \right)^k}$
Now we can break $175$ and $343$ into factors. We can write $175 = 5 \times 5 \times 7$ and $343 = 7 \times 7 \times 7$.
On putting these factors in the equation we get,
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{5 \times 5 \times 7}}{{7 \times 7 \times 7}}} \right)^k}$
On cancelling $7$ from numerator and denominator, we get-
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{5 \times 5}}{{7 \times 7}}} \right)^k}$
We can also write it as-
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{{{5^2}}}{{{7^2}}}} \right)^k}$
$ \Rightarrow \dfrac{5}{7} = {\left( {\dfrac{5}{7}} \right)^{2k}}$
Since the given ratios are equal then powers of the given ratios will also be equal.
$ \Rightarrow 1 = 2k$
On transferring $2$ from right to left we get,
$ \Rightarrow \dfrac{1}{2} = k$
Now we know the value of k. So on putting this value in eq. (ii) we get,
$ \Rightarrow 5x = {175^{\dfrac{1}{2}}}$
We can write$175 = 5 \times 5 \times 7$ then we get,
$ \Rightarrow 5x = {\left( {5 \times 5 \times 7} \right)^{\dfrac{1}{2}}}$
$ \Rightarrow 5x = {\left( {{5^2} \times 7} \right)^{\dfrac{1}{2}}}$
On simplifying we get,
$ \Rightarrow 5x = 5\sqrt 7 \Rightarrow x = \sqrt 7 $
Now we know the value of x. On putting the value of x in ${\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right)$, we get
$ \Rightarrow {\log _{42}}\left( {{{\left( {{7^{\dfrac{1}{2}}}} \right)}^4} - 2{{\left( {{7^{\dfrac{1}{2}}}} \right)}^2} + 7} \right)$
On simplifying we get,
$ \Rightarrow {\log _{42}}\left( {{7^2} - 2 \times 7 + 7} \right)$
$ \Rightarrow {\log _{42}}\left( {49 - 14 + 7} \right)$
$ \Rightarrow {\log _{42}}\left( {35 + 7} \right)$
$ \Rightarrow {\log _{42}}42$
We know that ${\log _e}e = 1$ then
$ \Rightarrow {\log _{42}}\left( {{{\text{x}}^4} - 2{{\text{x}}^2} + 7} \right) = 1$
Hence, the correct option is ‘A’.
Note: John Napier introduced the concept of logarithms which was later used by scientists and engineers to make the calculations simple. The logarithm is inverse of the exponential. It is used in surveying and celestial navigation. It is used to measure the loudness of sound in decibels, the intensity of the earthquake, and in radioactive decay. Remember that if bases are equal exponents will also be equal.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE