
If ${\log _3}5 = x$ and ${\log _{25}}11 = y$ then the value of ${\log _3}\left( {\dfrac{{11}}{3}} \right)$ in terms of x and y is
Answer
573.9k+ views
Hint: ${\log _3}5 = x$and ${\log _{25}}11 = y$ we will some property of logarithmic
${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and ${\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}}$ .
$\log {a^b} = b\log a$then ${\log _{25}}11 = \dfrac{{\log 11}}{{2\log 5}}$. Then we will divide it with $\log 3$ then we get ${\log _{25}}11 = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}$ from this we will get the value of ${\log _3}11$
And $\log \dfrac{a}{b} = \log a - \log b$ then ${\log _3}\dfrac{{11}}{3} = {\log _3}11 - {\log _3}3$ and ${\log _a}a = 1$ then substituting all the values we will get the answer.
Complete step-by-step answer:
given ${\log _3}5 = x$ and ${\log _{25}}11 = y$
it is known that ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ then
${\log _{25}}11 = y$
$ \Rightarrow {\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}} = y$
We know that $\log {a^b} = b\log a$ so,
$y = \dfrac{{\log 11}}{{2\log 5}}$
Dividing denominator and numerator with $\log 3$ then we get
\[y = \dfrac{{\dfrac{{\log 11}}{{\log 3}}}}{{\dfrac{{2\log 5}}{{\log 3}}}} = y = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}\]
According to question ${\log _3}5 = x$
Then ${\log _3}11 = 2yx$ …. (1)
Now, ${\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3$ as $\left[ {\log \dfrac{a}{b} = \log a - \log b} \right]$
And we know that ${\log _a}a = 1$ then ${\log _3}3 = 1$ and substituting the value (1) we get
${\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1$
Note: Properties used in question are
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log {a^b} = b\log a$
$\log \dfrac{a}{b} = \log a - \log b$
${\log _a}a = 1$
If there is nothing is written is base then it has a default 10
${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and ${\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}}$ .
$\log {a^b} = b\log a$then ${\log _{25}}11 = \dfrac{{\log 11}}{{2\log 5}}$. Then we will divide it with $\log 3$ then we get ${\log _{25}}11 = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}$ from this we will get the value of ${\log _3}11$
And $\log \dfrac{a}{b} = \log a - \log b$ then ${\log _3}\dfrac{{11}}{3} = {\log _3}11 - {\log _3}3$ and ${\log _a}a = 1$ then substituting all the values we will get the answer.
Complete step-by-step answer:
given ${\log _3}5 = x$ and ${\log _{25}}11 = y$
it is known that ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ then
${\log _{25}}11 = y$
$ \Rightarrow {\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}} = y$
We know that $\log {a^b} = b\log a$ so,
$y = \dfrac{{\log 11}}{{2\log 5}}$
Dividing denominator and numerator with $\log 3$ then we get
\[y = \dfrac{{\dfrac{{\log 11}}{{\log 3}}}}{{\dfrac{{2\log 5}}{{\log 3}}}} = y = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}\]
According to question ${\log _3}5 = x$
Then ${\log _3}11 = 2yx$ …. (1)
Now, ${\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3$ as $\left[ {\log \dfrac{a}{b} = \log a - \log b} \right]$
And we know that ${\log _a}a = 1$ then ${\log _3}3 = 1$ and substituting the value (1) we get
${\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1$
Note: Properties used in question are
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log {a^b} = b\log a$
$\log \dfrac{a}{b} = \log a - \log b$
${\log _a}a = 1$
If there is nothing is written is base then it has a default 10
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

