
If \[{\log _3}5 = x\]and \[{\log _{25}}11 = y\], then the value of \[{\log _3}\left( {\dfrac{{11}}{3}} \right)\] in terms of \[x\] and \[y\] is
Answer
595.5k+ views
Hint: Here, we will use the logarithm properties like, \[{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a\] , \[{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}\] and \[{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b\] to rewrite the given conditions in order to find the required value.
Complete step-by-step answer:
We are given that the \[{\log _3}5 = x\] and \[{\log _{25}}11 = y\].
We will now rewrite the expression \[{\log _{25}}11 = y\], we get
\[ \Rightarrow {\log _{{5^2}}}11 = y\]
Using the logarithm property, \[{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a\] in the above expression, we get
\[ \Rightarrow \dfrac{1}{2}{\log _5}11 = y\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 2\left( {\dfrac{1}{2}{{\log }_5}11} \right) = 2y \\
\Rightarrow {\log _5}11 = 2y \\
\]
Let us now make use of the property of logarithm, \[{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}\].
So, on applying this property in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{{{{\log }_3}5}} = 2y\]
Substituting the value of \[{\log _3}5\] in the above expression, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{x} = 2y\]
Multiplying the above equation by \[x\] on both sides, we get
\[
\Rightarrow x\left( {\dfrac{{{{\log }_3}11}}{x}} \right) = 2xy \\
\Rightarrow {\log _3}11 = 2xy \\
\]
Rewriting the expression \[{\log _3}\dfrac{{11}}{3}\] using the logarithm property, \[{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b\], we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3\]
Substituting the values of \[{\log _3}11\] and \[{\log _3}3\] in the above expression, we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1\]
Thus, the value of \[{\log _3}\dfrac{{11}}{3}\] is \[2xy - 1\].
Note: The logarithm rules can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Complete step-by-step answer:
We are given that the \[{\log _3}5 = x\] and \[{\log _{25}}11 = y\].
We will now rewrite the expression \[{\log _{25}}11 = y\], we get
\[ \Rightarrow {\log _{{5^2}}}11 = y\]
Using the logarithm property, \[{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a\] in the above expression, we get
\[ \Rightarrow \dfrac{1}{2}{\log _5}11 = y\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 2\left( {\dfrac{1}{2}{{\log }_5}11} \right) = 2y \\
\Rightarrow {\log _5}11 = 2y \\
\]
Let us now make use of the property of logarithm, \[{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}\].
So, on applying this property in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{{{{\log }_3}5}} = 2y\]
Substituting the value of \[{\log _3}5\] in the above expression, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{x} = 2y\]
Multiplying the above equation by \[x\] on both sides, we get
\[
\Rightarrow x\left( {\dfrac{{{{\log }_3}11}}{x}} \right) = 2xy \\
\Rightarrow {\log _3}11 = 2xy \\
\]
Rewriting the expression \[{\log _3}\dfrac{{11}}{3}\] using the logarithm property, \[{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b\], we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3\]
Substituting the values of \[{\log _3}11\] and \[{\log _3}3\] in the above expression, we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1\]
Thus, the value of \[{\log _3}\dfrac{{11}}{3}\] is \[2xy - 1\].
Note: The logarithm rules can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

