Answer
Verified
472.2k+ views
Hint: As we know that ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we will apply the same in the given equation taking both sides of the expression exponent equivalent to the base of the logarithm function. Applying this method we’ll again be in the same situation so we’ll apply it again by taking both sides of the expression, exponent equivalent to the base of the logarithm function.
Complete step by step answer:
Given data: ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Now, solving for x in the equation ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
It is well known that,
${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$
Now, ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Taking both the sides as the exponent of 2, we get
\[{{\text{2}}^{{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x))}}}}{\text{ = }}{{\text{2}}^{\text{3}}}\]
Using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[ \Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8}}\]
On simplification we get,
\[
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Now, taking both the sides as the exponent of 3, we get
\[{{\text{3}}^{{\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x)}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Again, using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
The digits in x i.e. 81 are 8 and 1, and their sum is 9.
Therefore, option (C) 9 is the correct option.
Note: An alternative method for doing this solution can be
It is well known that if
${\text{lo}}{{\text{g}}_{\text{x}}}{\text{y = a}}$ then,
${\text{y = }}{{\text{x}}^{\text{a}}}$
Applying this to the given equation, we’ll get
\[
{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}} \\
\Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = }}{{\text{2}}^{\text{3}}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Again, applying the same formula
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
Therefore the sum of digits in x is 9
Complete step by step answer:
Given data: ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Now, solving for x in the equation ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
It is well known that,
${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$
Now, ${\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}}$
Taking both the sides as the exponent of 2, we get
\[{{\text{2}}^{{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x))}}}}{\text{ = }}{{\text{2}}^{\text{3}}}\]
Using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[ \Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8}}\]
On simplification we get,
\[
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Now, taking both the sides as the exponent of 3, we get
\[{{\text{3}}^{{\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x)}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Again, using ${{\text{a}}^{{\text{lo}}{{\text{g}}_{\text{a}}}{\text{(x)}}}}{\text{ = x}}$, we get,
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
The digits in x i.e. 81 are 8 and 1, and their sum is 9.
Therefore, option (C) 9 is the correct option.
Note: An alternative method for doing this solution can be
It is well known that if
${\text{lo}}{{\text{g}}_{\text{x}}}{\text{y = a}}$ then,
${\text{y = }}{{\text{x}}^{\text{a}}}$
Applying this to the given equation, we’ll get
\[
{\text{lo}}{{\text{g}}_{\text{2}}}{\text{(4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x)) = 3}} \\
\Rightarrow {\text{4 + lo}}{{\text{g}}_{\text{3}}}{\text{(x) = }}{{\text{2}}^{\text{3}}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 8 - 4}} \\
\Rightarrow {\text{lo}}{{\text{g}}_{\text{3}}}{\text{(x) = 4}} \\
\]
Again, applying the same formula
\[
{\text{x = }}{{\text{3}}^{\text{4}}} \\
\Rightarrow {\text{x = 81}} \\
\]
Therefore the sum of digits in x is 9
Recently Updated Pages
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE