
If mid-points of the sides of $\Delta ABC$ are $(1,2),(0,1)$ and $(0,1),$ then find the coordinates of the three vertices of $\Delta ABC.$
Answer
465.9k+ views
Hint: Here we will find the midpoint of given points using related formulas. Here we will find the midpoint for all points that means $AB$ and $BC$ and $CA$ then finally we will find the coordinate points using some rules and some formula. Then finally we will get the vertices of the given points.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
