
If mid-points of the sides of $\Delta ABC$ are $(1,2),(0,1)$ and $(0,1),$ then find the coordinates of the three vertices of $\Delta ABC.$
Answer
565.5k+ views
Hint: Here we will find the midpoint of given points using related formulas. Here we will find the midpoint for all points that means $AB$ and $BC$ and $CA$ then finally we will find the coordinate points using some rules and some formula. Then finally we will get the vertices of the given points.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

