Answer
Verified
441.3k+ views
Hint: Here we will find the midpoint of given points using related formulas. Here we will find the midpoint for all points that means $AB$ and $BC$ and $CA$ then finally we will find the coordinate points using some rules and some formula. Then finally we will get the vertices of the given points.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Formula used:
Finding the midpoint of given point $ = \dfrac{{\;{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}$
Complete step-by-step answer:
Let $A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$ be the vertices of $\Delta ABC,$ let $P(1,2),Q(0, - 1)$ and $R(2, - 1)$ be the mid-points of sides $BC,AC$ and $AB$
Since, $P$ is the mid-point of $AB.$
$A({x_1},{y_1}),$ $B({x_2},{y_2}),$ and $C({x_3},{y_3}),$
$\therefore \dfrac{{{x_1} + {x_2}}}{2} = 1$ and $\dfrac{{{y_1} + {y_2}}}{2} = 2$
$ \Rightarrow {x_1} + {x_2} = 2 - - - - - - (1)$
$ \Rightarrow {y_2} + {y_3} = 4 - - - - - - (2)$
$Q(0,1)$ is the mid-point of $BC$
$\therefore \dfrac{{{x_2} + {x_3}}}{2} = 0$ and $\dfrac{{{y_2} + {y_3}}}{2} = 1$
$ \Rightarrow {x_2} + {x_3} = 0 - - - - - - (3)$
$ \Rightarrow {y_2} + {y_3} = 2 - - - - - - (4)$
$R(1,0)$ is the mid-point of $AC$
$\therefore \dfrac{{{x_3} + {x_1}}}{2} = 1$ and $\dfrac{{({y_3} + {y_1})}}{2} = 0$
$\Rightarrow {x_3} + {x_1} = 2 - - - - - - - (5)$
$\Rightarrow {y_3} + {y_1} = 0 - - - - - - (6)$
On adding equation $1,3\& 5$
$
2({x_1} + {x_2} + {x_3}) = 4 \\
{x_1} + {x_2} + {x_3} = \dfrac{4}{2} \\
{x_1} + {x_2} + {x_3} = 2 - - - - - - (7) \\
$
On adding equation $2,4\& 6$
$
2({y_1} + {y_2} + {y_3}) = 6 \\
{y_1} + {y_2} + {y_3} = 3 - - - - - - (6) \\
$
Subtracting equation $(1)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{x_1} + {x_2}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_3} = 0 \\
$
Subtracting equation $(3)$ from equation $(7)$
$
{x_1} + {x_2} + {x_3} = 2 \\
{\text{ + }}{{\text{x}}_2}{\text{ + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {{\text{x}}_1} = 2 \\
$
Subtracting equation $(5)$ from equation $(7)$
\[
{x_1} + {x_2} + {x_3} = 2 \\
{{\text{x}}_1}{\text{ + + }}{{\text{x}}_3}{\text{ = 2}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {x_2} = 0 \\
\]
Subtracting equation $(2)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + }}{{\text{y}}_2}{\text{ = 4}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_3} = - 1 \\
$
Subtracting equation $(4)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{\text{ + }}{{\text{y}}_2}{\text{ + }}{{\text{y}}_3}{\text{ = 2}} \\
{\text{ ( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_1} = 1 \\
$
Subtracting equation $(6)$ from equation $(8)$
$
{y_1} + {y_2} + {y_3} = 3 \\
{{\text{y}}_1}{\text{ + + }}{{\text{y}}_3}{\text{ = 0}} \\
{\text{( - ) ( - ) ( - )}} \\
{\text{ - - - - - - - - - - - - - - - - - - - - }} \\
\Rightarrow {y_2} = 3 \\
$
The value of ${x_1} = 2,{x_2} = 0$ and ${x_3} = 0$
The value of ${y_1} = 1,{y_2} = 3$ and ${y_3} = - 1$
Hence, the coordinates of the vertices of the $\Delta ABC$ are $A(2,1),B(0,3),C(0, - 1).$
Additional information:
The medial triangle or midpoint triangle of a triangle \[ABC\] is the triangle with vertices at the midpoints of the triangle's sides \[AB,{\text{ }}AC\] and \[BC.\] If you draw lines from each corner (or vertex) of a triangle to the midpoint of the opposite sides, then those three lines meet at a center, or centroid, of the triangle. The centroid is the triangle's center of gravity, where the triangle balances evenly.
Note:
Here Measure the distance between the two end points, and divide the result by \[2.\] This distance from either end is the midpoint of that line. Alternatively, add the two $x$ coordinates of the endpoints and divide by $2.$Do the same for the $y$ coordinates.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE