Answer
Verified
498.3k+ views
Hint – In order to solve this question we need to know that nth term of HP is inverse of nth term of AP. After using this concept as per the conditions given we will get the answer.
Complete step-by-step answer:
As we know nth term of HP is inverse of nth term of AP.
It is given that \[{{\text{m}}^{{\text{th}}}}\] the term of HP is n.
So, ${{\text{T}}_{\text{m}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m - 1)d}}}}{\text{ = n}}$ ……(1)
And ${{\text{T}}_{\text{n}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (n - 1)d}}}}{\text{ = m}}$ ……(2)
Equation (1) can be written as:
${\text{a + (m - 1)d = }}\dfrac{{\text{1}}}{{\text{n}}}$= a + md – d ……(3)
Equation (2) can be written as:
${\text{a + (n - 1)d = }}\dfrac{{\text{1}}}{{\text{m}}}$= a + nd – d ……(4)
On subtracting equation (4) from (3) we get the new equation as:
a – a +md – nd – d + d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{{\text{m - n}}}}{{{\text{mn}}}}$
Then we get, d = $\dfrac{{\text{1}}}{{{\text{mn}}}}$
On putting the value of d in equation (3) we get the new equation as:
$
{\text{a + (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{m}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{\text{m}}}{\text{ - (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{{\text{n - n + 1}}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
$
Now we have first term and common difference so now we can find the
(m + n)th term of HP.
${{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m + n - 1)d}}}}$
On putting the value of a and d in above equation we get,
$
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ + (m + n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{{\text{1 + m + n - 1}}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{{\text{mn}}}}{{{\text{m + n}}}} \\
$
So, we get the \[{\left( {{\text{m + n}}} \right)^{{\text{th}}}}\] term of the HP.
Note – Whenever you face such types of problems you have used the concept that nth term of HP is inverse of nth term of AP. Here in this question we have made equations of AP with the help of given HP then solved it to find the first term and common difference then you can find any of the terms with the help of first term and common difference. Proceeding like this will take you to the right solution of the question asked.
Complete step-by-step answer:
As we know nth term of HP is inverse of nth term of AP.
It is given that \[{{\text{m}}^{{\text{th}}}}\] the term of HP is n.
So, ${{\text{T}}_{\text{m}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m - 1)d}}}}{\text{ = n}}$ ……(1)
And ${{\text{T}}_{\text{n}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (n - 1)d}}}}{\text{ = m}}$ ……(2)
Equation (1) can be written as:
${\text{a + (m - 1)d = }}\dfrac{{\text{1}}}{{\text{n}}}$= a + md – d ……(3)
Equation (2) can be written as:
${\text{a + (n - 1)d = }}\dfrac{{\text{1}}}{{\text{m}}}$= a + nd – d ……(4)
On subtracting equation (4) from (3) we get the new equation as:
a – a +md – nd – d + d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{{\text{m - n}}}}{{{\text{mn}}}}$
Then we get, d = $\dfrac{{\text{1}}}{{{\text{mn}}}}$
On putting the value of d in equation (3) we get the new equation as:
$
{\text{a + (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{m}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{\text{m}}}{\text{ - (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{{\text{n - n + 1}}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
$
Now we have first term and common difference so now we can find the
(m + n)th term of HP.
${{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m + n - 1)d}}}}$
On putting the value of a and d in above equation we get,
$
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ + (m + n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{{\text{1 + m + n - 1}}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{{\text{mn}}}}{{{\text{m + n}}}} \\
$
So, we get the \[{\left( {{\text{m + n}}} \right)^{{\text{th}}}}\] term of the HP.
Note – Whenever you face such types of problems you have used the concept that nth term of HP is inverse of nth term of AP. Here in this question we have made equations of AP with the help of given HP then solved it to find the first term and common difference then you can find any of the terms with the help of first term and common difference. Proceeding like this will take you to the right solution of the question asked.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE