Answer
Verified
468.3k+ views
Hint: We’ll approach the value of n by simplifying the equation ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$, for the simplification of this equation we’ll use of the formula
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.
Complete step by step answer:
Given data: ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
Now, solving for ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
\[ \Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
Using, ${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
\[\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On simplification we get,
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On Using ${\text{n! = n(n - 1)!}}$, we get,
\[\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On cancelling common terms we get,
\[ \Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
After cross multiplication we get,
\[ \Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}\]
On expansion we get,
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
On further simplification we get,
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}\]
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}\]
Now we’ll split the coefficient of n such that they are the factors of the coefficient of ${{\text{n}}^{\text{2}}}$ and independent term, we get,
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}\]
On taking factors common we get,
\[ \Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}\]
After taking (n-8) common from both the terms we get,
\[ \Rightarrow {\text{(n - 8)(7n - 9) = 0}}\]
\[{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}\]
\[\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}\]
Since n is a natural number
Answer is n=8
Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by ${}^{\text{n}}{{\text{P}}_{\text{r}}}$, and this expression is equal to
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is ${}^{\text{n}}{{\text{C}}_{\text{r}}}$, and this expression is equal to
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}$
Or for more simplification, we can conclude that
$\begin{gathered}
{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\
\Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\
\end{gathered} $
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.
Complete step by step answer:
Given data: ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
Now, solving for ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
\[ \Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
Using, ${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
\[\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On simplification we get,
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On Using ${\text{n! = n(n - 1)!}}$, we get,
\[\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On cancelling common terms we get,
\[ \Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
After cross multiplication we get,
\[ \Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}\]
On expansion we get,
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
On further simplification we get,
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}\]
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}\]
Now we’ll split the coefficient of n such that they are the factors of the coefficient of ${{\text{n}}^{\text{2}}}$ and independent term, we get,
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}\]
On taking factors common we get,
\[ \Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}\]
After taking (n-8) common from both the terms we get,
\[ \Rightarrow {\text{(n - 8)(7n - 9) = 0}}\]
\[{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}\]
\[\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}\]
Since n is a natural number
Answer is n=8
Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by ${}^{\text{n}}{{\text{P}}_{\text{r}}}$, and this expression is equal to
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is ${}^{\text{n}}{{\text{C}}_{\text{r}}}$, and this expression is equal to
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}$
Or for more simplification, we can conclude that
$\begin{gathered}
{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\
\Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\
\end{gathered} $
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE