Answer
Verified
497.7k+ views
Hint: To find the minimum value of \[n\] such that the value of sum \[n+2n+3n+...+99n\] is a perfect square, use the formula for the sum of \[k\] consecutive positive integers as \[\sum\limits_{i=1}^{k}{i}=\dfrac{k\left( k+1 \right)}{2}\] to find the sum of \[n+2n+3n+...+99n\]. Find the terms needed to be multiplied to make the given value of sum a perfect square. Square the calculated value of \[n\] and count the digits in the value of \[{{n}^{2}}\].
Complete step-by-step answer:
We have to find the smallest value of integer \[n\] such that the value of \[n+2n+3n+...+99n\] is a perfect square. Further, we have to calculate the digits in the number \[{{n}^{2}}\].
We can rewrite \[n+2n+3n+...+99n\] as \[n\left( 1+2+3+...+99 \right)\].
We have to find the value of \[1+2+3+...+99\].
We know that the formula for sum of \[k\] consecutive positive integers is \[\sum\limits_{i=1}^{k}{i}=\dfrac{k\left( k+1 \right)}{2}\].
Substituting \[k=99\], we have \[1+2+3+...+99=\dfrac{99\times 100}{2}=99\times 50\].
Thus, we have \[n+2n+3n+...+99n=n\left( 99\times 50 \right)\].
We observe that \[n\left( 99\times 50 \right)\] is not a perfect square. We have to make it a perfect square. Factorizing the term \[n\left( 99\times 50 \right)\], we have \[n\left( 99\times 50 \right)=n\left( 9\times 11\times 2\times 25 \right)\].
We observe that \[9\times 25\] is already a perfect square. Thus, the minimum value of \[n\] should be \[11\times 2\] to make \[n\left( 9\times 11\times 2\times 25 \right)\] a perfect square.
Thus, we have the value of \[n\] as \[n=11\times 2=22\].
So, the value of \[{{n}^{2}}\] will be \[{{n}^{2}}=484\].
Hence, the number of digits in \[{{n}^{2}}\] is \[3\], which is option (c).
Note: It’s necessary to use the formula for calculating the sum of \[k\] consecutive positive integers. Also, it’s necessary to keep in mind that the value of \[n\] has to be minimum to get a perfect square, otherwise, we will get an incorrect answer. A perfect square is a number obtained by multiplying a whole number by itself. The perfect square numbers must end with digits \[1,4,5,6,9\]. Perfect squares never end with digits \[2,3,7,8\].
.
Complete step-by-step answer:
We have to find the smallest value of integer \[n\] such that the value of \[n+2n+3n+...+99n\] is a perfect square. Further, we have to calculate the digits in the number \[{{n}^{2}}\].
We can rewrite \[n+2n+3n+...+99n\] as \[n\left( 1+2+3+...+99 \right)\].
We have to find the value of \[1+2+3+...+99\].
We know that the formula for sum of \[k\] consecutive positive integers is \[\sum\limits_{i=1}^{k}{i}=\dfrac{k\left( k+1 \right)}{2}\].
Substituting \[k=99\], we have \[1+2+3+...+99=\dfrac{99\times 100}{2}=99\times 50\].
Thus, we have \[n+2n+3n+...+99n=n\left( 99\times 50 \right)\].
We observe that \[n\left( 99\times 50 \right)\] is not a perfect square. We have to make it a perfect square. Factorizing the term \[n\left( 99\times 50 \right)\], we have \[n\left( 99\times 50 \right)=n\left( 9\times 11\times 2\times 25 \right)\].
We observe that \[9\times 25\] is already a perfect square. Thus, the minimum value of \[n\] should be \[11\times 2\] to make \[n\left( 9\times 11\times 2\times 25 \right)\] a perfect square.
Thus, we have the value of \[n\] as \[n=11\times 2=22\].
So, the value of \[{{n}^{2}}\] will be \[{{n}^{2}}=484\].
Hence, the number of digits in \[{{n}^{2}}\] is \[3\], which is option (c).
Note: It’s necessary to use the formula for calculating the sum of \[k\] consecutive positive integers. Also, it’s necessary to keep in mind that the value of \[n\] has to be minimum to get a perfect square, otherwise, we will get an incorrect answer. A perfect square is a number obtained by multiplying a whole number by itself. The perfect square numbers must end with digits \[1,4,5,6,9\]. Perfect squares never end with digits \[2,3,7,8\].
.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE