Answer
Verified
469.2k+ views
Hint: We will use the property of the combinations which states that If we are given a condition that ${}^n{C_p} = {}^n{C_q}$, then any of these two situations will follow: (i): p = q and (ii): p + q = n to solve the given question. Here, n is the total number of ways to do a certain action then p or q are the individual ways to do it in a specific manner.
Complete step-by-step answer:
We are given a condition that ${}^n{C_4} = {}^n{C_6}$.
Then we know that we have a property of combinations which states that if ${}^n{C_p} = {}^n{C_q}$, then either p = q or p + q = n.
Here, we have ${}^n{C_4} = {}^n{C_6}$, we can say that here p = 4 and q = 6.
Using the above property in the given condition, we get
Either of the two conditions satisfy i. e.,
(i): p = q
$ \Rightarrow 4$should be equal to 6 but $4 \ne 6$.
Hence, we can say that this situation is not possible.
Looking at the first situation, we get that second situation must follow as the first is not possible.
(ii): p + q = n
$
\Rightarrow 4 + 6 = n \\
\Rightarrow 10 = n \\
$
Hence, substituting this value of n in ${}^{12}{C_n}$, we get
$ \Rightarrow {}^{12}{C_{10}}$ is the required value we need to calculate.
Upon simplification using the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ , we get
$ \Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{\left( {12 - 10} \right)!10!}}$
$ \Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{2!10!}}$
$ \Rightarrow {}^{12}{C_{10}} = \dfrac{{12 \times 11}}{{2 \times 1}} = 66$
Therefore, we can say that the value $ \Rightarrow {}^{12}{C_{10}}$is 66.
Note: This problem is not tough but tricky. We can also find the required value by evaluating the given condition ${}^n{C_4} = {}^n{C_6}$ for the value of n and then substituting it in $ \Rightarrow {}^{12}{C_{10}}$.
Complete step-by-step answer:
We are given a condition that ${}^n{C_4} = {}^n{C_6}$.
Then we know that we have a property of combinations which states that if ${}^n{C_p} = {}^n{C_q}$, then either p = q or p + q = n.
Here, we have ${}^n{C_4} = {}^n{C_6}$, we can say that here p = 4 and q = 6.
Using the above property in the given condition, we get
Either of the two conditions satisfy i. e.,
(i): p = q
$ \Rightarrow 4$should be equal to 6 but $4 \ne 6$.
Hence, we can say that this situation is not possible.
Looking at the first situation, we get that second situation must follow as the first is not possible.
(ii): p + q = n
$
\Rightarrow 4 + 6 = n \\
\Rightarrow 10 = n \\
$
Hence, substituting this value of n in ${}^{12}{C_n}$, we get
$ \Rightarrow {}^{12}{C_{10}}$ is the required value we need to calculate.
Upon simplification using the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ , we get
$ \Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{\left( {12 - 10} \right)!10!}}$
$ \Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{2!10!}}$
$ \Rightarrow {}^{12}{C_{10}} = \dfrac{{12 \times 11}}{{2 \times 1}} = 66$
Therefore, we can say that the value $ \Rightarrow {}^{12}{C_{10}}$is 66.
Note: This problem is not tough but tricky. We can also find the required value by evaluating the given condition ${}^n{C_4} = {}^n{C_6}$ for the value of n and then substituting it in $ \Rightarrow {}^{12}{C_{10}}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE