
If \[{}^n{P_2} = 90\] then find the value of \[n\].
Answer
465.9k+ views
Hint: Here, we will compare the given equation to the formula of Permutations and solving this further using factorials we will get a quadratic equation. We will solve the equation using the method of middle term splitting and find the required value of \[n\].
Formula Used:
We will use the following formulas:
1. \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the total number of terms and \[r\] is the number of terms to be arranged among them.
2. \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\]
Complete step-by-step answer:
We will consider the left hand side of the given equation \[{}^n{P_2} = 90\].
Substituting \[r = 2\] in the formula \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], we get,
\[{}^n{P_2} = \dfrac{{n!}}{{\left( {n - 2} \right)!}}\]…………………………. \[\left( 1 \right)\]
Substituting \[{}^n{P_2} = 90\] in the above equation, we get
\[ \Rightarrow \dfrac{{n!}}{{\left( {n - 2} \right)!}} = 90\]
Computing the factorials using the formula \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\], we get
\[ \Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} = 90\]
Solving the above equation further, we get
\[ \Rightarrow n\left( {n - 1} \right) = 90\]
Multiplying the terms using distributive property, we get
\[ \Rightarrow {n^2} - n - 90 = 0\]
The above equation is a quadratic, we will factorize the equation to find the value of \[n\].
Now, splitting the middle term split, we get
\[ \Rightarrow {n^2} - 10n + 9n - 90 = 0\]
Now factoring out common terms, we get
\[ \Rightarrow n\left( {n - 10} \right) + 9\left( {n - 10} \right) = 0\]
Again factoring out the common terms, we get
\[ \Rightarrow \left( {n + 9} \right)\left( {n - 10} \right) = 0\]
Now using zero product property, we get
\[\begin{array}{l} \Rightarrow \left( {n + 9} \right) = 0\\ \Rightarrow n = - 9\end{array}\]
Or
\[\begin{array}{l} \Rightarrow \left( {n - 10} \right) = 0\\ \Rightarrow n = 10\end{array}\]
But, the total number of terms cannot be negative.
Hence, rejecting the negative value, \[n \ne - 9\]
Therefore, the required value of \[n\] is 10.
Note: In this question, we are required to use the formula of Permutations. Permutation is a way or method of arranging elements from a given set of elements, where the order or sequence of arrangement matters. We might make a mistake by using the formula of combination instead of permutation. Combination is a method of selecting elements from a given set but the order of selection doesn’t matter.
Formula Used:
We will use the following formulas:
1. \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the total number of terms and \[r\] is the number of terms to be arranged among them.
2. \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\]
Complete step-by-step answer:
We will consider the left hand side of the given equation \[{}^n{P_2} = 90\].
Substituting \[r = 2\] in the formula \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], we get,
\[{}^n{P_2} = \dfrac{{n!}}{{\left( {n - 2} \right)!}}\]…………………………. \[\left( 1 \right)\]
Substituting \[{}^n{P_2} = 90\] in the above equation, we get
\[ \Rightarrow \dfrac{{n!}}{{\left( {n - 2} \right)!}} = 90\]
Computing the factorials using the formula \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\], we get
\[ \Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} = 90\]
Solving the above equation further, we get
\[ \Rightarrow n\left( {n - 1} \right) = 90\]
Multiplying the terms using distributive property, we get
\[ \Rightarrow {n^2} - n - 90 = 0\]
The above equation is a quadratic, we will factorize the equation to find the value of \[n\].
Now, splitting the middle term split, we get
\[ \Rightarrow {n^2} - 10n + 9n - 90 = 0\]
Now factoring out common terms, we get
\[ \Rightarrow n\left( {n - 10} \right) + 9\left( {n - 10} \right) = 0\]
Again factoring out the common terms, we get
\[ \Rightarrow \left( {n + 9} \right)\left( {n - 10} \right) = 0\]
Now using zero product property, we get
\[\begin{array}{l} \Rightarrow \left( {n + 9} \right) = 0\\ \Rightarrow n = - 9\end{array}\]
Or
\[\begin{array}{l} \Rightarrow \left( {n - 10} \right) = 0\\ \Rightarrow n = 10\end{array}\]
But, the total number of terms cannot be negative.
Hence, rejecting the negative value, \[n \ne - 9\]
Therefore, the required value of \[n\] is 10.
Note: In this question, we are required to use the formula of Permutations. Permutation is a way or method of arranging elements from a given set of elements, where the order or sequence of arrangement matters. We might make a mistake by using the formula of combination instead of permutation. Combination is a method of selecting elements from a given set but the order of selection doesn’t matter.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
