Answer
Verified
501.3k+ views
Hint: - Use sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$, and product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
Given quadratic equation ${x^2} + f\left( a \right)x + a = 0$
Let $\alpha $and $\beta $be the roots of the equation.
As you know sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$
And product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
$
\Rightarrow \alpha + \beta = \dfrac{{ - f\left( a \right)}}{1} = - f\left( a \right).........\left( 1 \right), \\
\alpha \beta = \dfrac{a}{1} = a...............\left( 2 \right) \\
$
Now it is given that one root is the cube of other
$ \Rightarrow {\alpha ^3} = \beta $
From equation 2, considering real values of $\alpha $ we get
$
{\alpha ^3}\alpha = a \\
\Rightarrow {\alpha ^4} = a \\
\Rightarrow \alpha = \pm {a^{\dfrac{1}{4}}} \\
$
For positive value of $\alpha $
$ \Rightarrow \alpha = + {a^{\dfrac{1}{4}}}.............\left( 3 \right)$
Therefore from equation 1
$
\alpha + \beta = - f\left( a \right) \\
\Rightarrow \alpha + {\alpha ^3} = - f\left( a \right) \\
$
Now, from equation 3
\[
\Rightarrow {a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}} = - f\left( a \right) \\
\Rightarrow f\left( a \right) = - \left( {{a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}}} \right) \\
\Rightarrow f\left( a \right) = - {a^{\dfrac{1}{4}}}\left( {1 + {a^{\dfrac{1}{2}}}} \right) \\
\]
Now, in place of $a$ substitute $x$ in the above equation.
\[ \Rightarrow f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right)\]
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that for a quadratic equation always remember the sum of roots and product of roots which is stated above, then simplify according to the given condition we will get the required answer.
Given quadratic equation ${x^2} + f\left( a \right)x + a = 0$
Let $\alpha $and $\beta $be the roots of the equation.
As you know sum of the roots $ = \dfrac{{ - {\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^2}}}$
And product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{Coefficient of }}{x^2}}}$
$
\Rightarrow \alpha + \beta = \dfrac{{ - f\left( a \right)}}{1} = - f\left( a \right).........\left( 1 \right), \\
\alpha \beta = \dfrac{a}{1} = a...............\left( 2 \right) \\
$
Now it is given that one root is the cube of other
$ \Rightarrow {\alpha ^3} = \beta $
From equation 2, considering real values of $\alpha $ we get
$
{\alpha ^3}\alpha = a \\
\Rightarrow {\alpha ^4} = a \\
\Rightarrow \alpha = \pm {a^{\dfrac{1}{4}}} \\
$
For positive value of $\alpha $
$ \Rightarrow \alpha = + {a^{\dfrac{1}{4}}}.............\left( 3 \right)$
Therefore from equation 1
$
\alpha + \beta = - f\left( a \right) \\
\Rightarrow \alpha + {\alpha ^3} = - f\left( a \right) \\
$
Now, from equation 3
\[
\Rightarrow {a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}} = - f\left( a \right) \\
\Rightarrow f\left( a \right) = - \left( {{a^{\dfrac{1}{4}}} + {a^{\dfrac{3}{4}}}} \right) \\
\Rightarrow f\left( a \right) = - {a^{\dfrac{1}{4}}}\left( {1 + {a^{\dfrac{1}{2}}}} \right) \\
\]
Now, in place of $a$ substitute $x$ in the above equation.
\[ \Rightarrow f\left( x \right) = - {x^{\dfrac{1}{4}}}\left( {1 + {x^{\dfrac{1}{2}}}} \right)\]
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that for a quadratic equation always remember the sum of roots and product of roots which is stated above, then simplify according to the given condition we will get the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE