If one root of the $ i{{x}^{2}}-2(1+i)x+(2-i)=0 $ is 3 – i; where $ i=\sqrt{-1} $ , then the other root is
( a ) 3 + i
( b ) 3 + 2i
( c ) -1 + i
( d ) -1 - i
Answer
Verified
475.8k+ views
Hint: We will use the results based on of relationship between roots of quadratic equation to evaluate the values of $ \alpha +\beta $, which is given by the relation of coefficients of quadratic equation such as $ \alpha +\beta =-\dfrac{b}{a} $ for quadratic equation $ a{{x}^{2}}+bx+c=0 $ where $ a\ne 0. $
Complete step-by-step answer:
Now, firstly we will find the coefficients of $ {{x}^{2}} $, $ x $ and constant c from the given polynomial $ i{{x}^{2}}-2(1+i)x+(2-i)=0 $ by comparing it with the general form of quadratic polynomial which is expressed as $ a{{x}^{2}}+bx+c=0 $ .
On comparing given polynomial with general form of quadratic polynomial, we get coefficients of quadratic polynomial $ i{{x}^{2}}-2(1+i)x+(2-i)=0 $ equals to,
a = i, b = -2( i + 1 ), c = 2 - i
let, \[\alpha ,\beta \] be two roots of quadratic polynomials.
Now,
Here, we know that $ \alpha +\beta =-\dfrac{b}{a} $ ……( i ),
So, we can obtain the value of $ \beta $ which represents the another root of quadratic equation, easily by substituting the values of b and a in an equation ( i )
Substituting values of a = i and b = -2( i + 1 ) in $ \alpha +\beta =-\dfrac{b}{a} $ , we get
$ \alpha +\beta =-\dfrac{(-2-2i)}{i} $
On simplifying signs, we get
$ \alpha +\beta =\dfrac{(2+2i)}{i} $
We know, $ \alpha =3-i $ as it is one of the root of quadratic equation, then substituting value of $ \alpha =3-i $ in $ \alpha +\beta =\dfrac{(2+2i)}{i} $, we get
$ (3-i)+\beta =\dfrac{(2+2i)}{i} $
Multiplying numerator and denominator on right hand side by i, we get
$ (3-i)+\beta =\dfrac{(2+2i)}{i}\times \dfrac{i}{i} $
On solving, we get
$ (3-i)+\beta =\dfrac{(2i+2{{i}^{2}})}{{{i}^{2}}} $
As $ {{i}^{2}}=-1 $ , so
$ (3-i)+\beta =\dfrac{(2i-2)}{-1} $
On simplifying, we get
$ (3-i)+\beta =-2i+2 $
$ \beta =-i-1 $
So, the correct answer is “Option D”.
Note: Remember these formulae as they are very helpful in solving questions. While calculating the coefficients of a quadratic equation, try to avoid signs of error as this makes the answer incorrect. Simplification of signs should be done carefully. We can also use the product of the root formula and simplify to get the answer.
Complete step-by-step answer:
Now, firstly we will find the coefficients of $ {{x}^{2}} $, $ x $ and constant c from the given polynomial $ i{{x}^{2}}-2(1+i)x+(2-i)=0 $ by comparing it with the general form of quadratic polynomial which is expressed as $ a{{x}^{2}}+bx+c=0 $ .
On comparing given polynomial with general form of quadratic polynomial, we get coefficients of quadratic polynomial $ i{{x}^{2}}-2(1+i)x+(2-i)=0 $ equals to,
a = i, b = -2( i + 1 ), c = 2 - i
let, \[\alpha ,\beta \] be two roots of quadratic polynomials.
Now,
Here, we know that $ \alpha +\beta =-\dfrac{b}{a} $ ……( i ),
So, we can obtain the value of $ \beta $ which represents the another root of quadratic equation, easily by substituting the values of b and a in an equation ( i )
Substituting values of a = i and b = -2( i + 1 ) in $ \alpha +\beta =-\dfrac{b}{a} $ , we get
$ \alpha +\beta =-\dfrac{(-2-2i)}{i} $
On simplifying signs, we get
$ \alpha +\beta =\dfrac{(2+2i)}{i} $
We know, $ \alpha =3-i $ as it is one of the root of quadratic equation, then substituting value of $ \alpha =3-i $ in $ \alpha +\beta =\dfrac{(2+2i)}{i} $, we get
$ (3-i)+\beta =\dfrac{(2+2i)}{i} $
Multiplying numerator and denominator on right hand side by i, we get
$ (3-i)+\beta =\dfrac{(2+2i)}{i}\times \dfrac{i}{i} $
On solving, we get
$ (3-i)+\beta =\dfrac{(2i+2{{i}^{2}})}{{{i}^{2}}} $
As $ {{i}^{2}}=-1 $ , so
$ (3-i)+\beta =\dfrac{(2i-2)}{-1} $
On simplifying, we get
$ (3-i)+\beta =-2i+2 $
$ \beta =-i-1 $
So, the correct answer is “Option D”.
Note: Remember these formulae as they are very helpful in solving questions. While calculating the coefficients of a quadratic equation, try to avoid signs of error as this makes the answer incorrect. Simplification of signs should be done carefully. We can also use the product of the root formula and simplify to get the answer.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Trending doubts
Distinguish between Khadar and Bhangar class 9 social science CBSE
Give a brief account of the thorn forests and scru class 9 social science CBSE
On an outline map of India mark the Karakoram range class 9 social science CBSE
What is the importance of natural resources? Why is it necessary to conserve them?
The ice floats on water because A solid have lesser class 9 chemistry CBSE
Explain the importance of pH in everyday life class 9 chemistry CBSE