If one root of \[{x^2} - x - k = 0\] maybe the square of the other, then k =
A) $2 \pm \sqrt 5 $
B) $2 \pm \sqrt 3 $
C) $3 \pm \sqrt 2 $
D) $5 \pm \sqrt 2 $
Answer
Verified
466.5k+ views
Hint: First find the relation between roots and the coefficients. Now take the cube of the sum of the roots. Then expand the cube by the formula ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)$. Then substitute the values from the sum of the roots and product of the roots which will make a quadratic equation. After that solve the equation by the quadratic formula $k = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. The value came after simplification is the desired result.
Complete step by step answer:
Given: - One root of the equation is the square of the other root.
Let the roots of the equation be $\alpha ,{\alpha ^2}$.
The relation between the roots and the coefficients are,
$\alpha + \beta = - \dfrac{b}{a}$
\[\alpha \beta = \dfrac{c}{a}\]
Substitute the values,
$ \Rightarrow \alpha + {\alpha ^2} = - \dfrac{{\left( { - 1} \right)}}{1}$
\[ \Rightarrow \alpha \left( {{\alpha ^2}} \right) = \dfrac{{ - k}}{1}\]
Simplify the terms,
$ \Rightarrow \alpha + {\alpha ^2} = 1$ …… (1)
$ \Rightarrow {\alpha ^3} = - k$ …… (2)
Now, take the cube of $\alpha + {\alpha ^2} = 1$,
$ \Rightarrow {\left( {\alpha + {\alpha ^2}} \right)^3} = {1^3}$
As we know,
${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)$
Substitute the values,
$ \Rightarrow {\alpha ^3} + {\left( {{\alpha ^2}} \right)^3} + 3\alpha \times {\alpha ^2}\left( {\alpha + {\alpha ^2}} \right) = 1$
Simplify the terms,
$ \Rightarrow {\alpha ^3} + {\alpha ^6} + 3{\alpha ^3}\left( {\alpha + {\alpha ^2}} \right) = 1$
Substitute the values from equation (1) and (2),
$ \Rightarrow - k + {\left( { - k} \right)^2} + 3 \times - k \times 1 = 1$
Multiply the terms,
$ \Rightarrow {k^2} - 4k = 1$
Move 1 to the left side,
$ \Rightarrow {k^2} - 4k - 1 = 0$
Now, solve by quadratic formula,
$k = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substitute the values,
$ \Rightarrow k = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 1 \times - 1} }}{{2 \times 1}}$
Multiply the terms,
$ \Rightarrow k = \dfrac{{4 \pm \sqrt {16 + 4} }}{2}$
Add the terms in the square root,
$ \Rightarrow k = \dfrac{{4 \pm \sqrt {20} }}{2}$
Take common factors out from the square root,
$ \Rightarrow k = \dfrac{{4 \pm 2\sqrt 5 }}{2}$
Cancel out the common factors,
$ \Rightarrow k = 2 \pm \sqrt 5 $
Thus, the value of k is $2 \pm \sqrt 5 $.
Hence, option (A) is the correct answer.
Note:
A quadratic equation is a polynomial equation of degree 2. A quadratic equation has two solutions. Either two distinct real solutions, one double real solution, or two imaginary solutions.
There are several methods you can use to solve a quadratic equation:
- Factoring
- Completing the Square
- Quadratic Formula
- Graphing
All methods start with setting the equation equal to zero.
Complete step by step answer:
Given: - One root of the equation is the square of the other root.
Let the roots of the equation be $\alpha ,{\alpha ^2}$.
The relation between the roots and the coefficients are,
$\alpha + \beta = - \dfrac{b}{a}$
\[\alpha \beta = \dfrac{c}{a}\]
Substitute the values,
$ \Rightarrow \alpha + {\alpha ^2} = - \dfrac{{\left( { - 1} \right)}}{1}$
\[ \Rightarrow \alpha \left( {{\alpha ^2}} \right) = \dfrac{{ - k}}{1}\]
Simplify the terms,
$ \Rightarrow \alpha + {\alpha ^2} = 1$ …… (1)
$ \Rightarrow {\alpha ^3} = - k$ …… (2)
Now, take the cube of $\alpha + {\alpha ^2} = 1$,
$ \Rightarrow {\left( {\alpha + {\alpha ^2}} \right)^3} = {1^3}$
As we know,
${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)$
Substitute the values,
$ \Rightarrow {\alpha ^3} + {\left( {{\alpha ^2}} \right)^3} + 3\alpha \times {\alpha ^2}\left( {\alpha + {\alpha ^2}} \right) = 1$
Simplify the terms,
$ \Rightarrow {\alpha ^3} + {\alpha ^6} + 3{\alpha ^3}\left( {\alpha + {\alpha ^2}} \right) = 1$
Substitute the values from equation (1) and (2),
$ \Rightarrow - k + {\left( { - k} \right)^2} + 3 \times - k \times 1 = 1$
Multiply the terms,
$ \Rightarrow {k^2} - 4k = 1$
Move 1 to the left side,
$ \Rightarrow {k^2} - 4k - 1 = 0$
Now, solve by quadratic formula,
$k = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substitute the values,
$ \Rightarrow k = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 1 \times - 1} }}{{2 \times 1}}$
Multiply the terms,
$ \Rightarrow k = \dfrac{{4 \pm \sqrt {16 + 4} }}{2}$
Add the terms in the square root,
$ \Rightarrow k = \dfrac{{4 \pm \sqrt {20} }}{2}$
Take common factors out from the square root,
$ \Rightarrow k = \dfrac{{4 \pm 2\sqrt 5 }}{2}$
Cancel out the common factors,
$ \Rightarrow k = 2 \pm \sqrt 5 $
Thus, the value of k is $2 \pm \sqrt 5 $.
Hence, option (A) is the correct answer.
Note:
A quadratic equation is a polynomial equation of degree 2. A quadratic equation has two solutions. Either two distinct real solutions, one double real solution, or two imaginary solutions.
There are several methods you can use to solve a quadratic equation:
- Factoring
- Completing the Square
- Quadratic Formula
- Graphing
All methods start with setting the equation equal to zero.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE