Answer
Verified
475.5k+ views
Hint : To solve this question, we will use the concept of properties of scalar products of vectors. According to that, if \[\hat i,\hat j,\hat k\] are three mutually perpendicular unit vectors along the coordinates axes, then \[\hat i.\hat j = \hat j.\hat i = 0;\] \[\hat j.\hat k = \hat k.\hat j = 0;\] \[\hat k.\hat i = \hat i.\hat k = 0\].
Complete step by step solution:
A vector whose magnitude in unity, is called a unit vector. The unit vector in the direction of a vector $\overrightarrow a $ is denoted by $\hat a$. Thus, $\left| {\hat a} \right| = 1$.
Given that, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors.
We have to prove that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Proof :
As we know that if \[\hat i,\hat j,\hat k\] are three mutually perpendicular unit vectors along the coordinates axes, then \[\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0\].
Since, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, therefore
$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$. ……….. (i)
We know that, ${\left| {\overrightarrow x } \right|^2} = \overrightarrow x .\overrightarrow x $.
Therefore,
${\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$.
$
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\overrightarrow a .\overrightarrow b + 2\overrightarrow b .\overrightarrow c + 2\overrightarrow c .\overrightarrow a \\
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) \\
$
Putting the value of $\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $ from equation (i), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$ ……….. (ii)
According to the question, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors and we know that the magnitude of a unit vector is always equal to 1.
Therefore,
${\left| {\overrightarrow a } \right|^2} = {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow c } \right|^2} = 1$ [ $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors ]
Putting this value in equation (ii), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 1 + 1 + 1$
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 3$
Taking square root both sides, we will get
$ \Rightarrow \left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Hence proved, If $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, then we can say that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Note : whenever we ask such types of questions, we have to remember the properties of the scalar product of vectors. First we have to find out what is given in the question then what we have to prove. After that we will use the properties on the given part. We will use the concept of unit vectors and mutually perpendicular vectors. Using this, we can easily prove the question and we will get the answer.
Complete step by step solution:
A vector whose magnitude in unity, is called a unit vector. The unit vector in the direction of a vector $\overrightarrow a $ is denoted by $\hat a$. Thus, $\left| {\hat a} \right| = 1$.
Given that, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors.
We have to prove that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Proof :
As we know that if \[\hat i,\hat j,\hat k\] are three mutually perpendicular unit vectors along the coordinates axes, then \[\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0\].
Since, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, therefore
$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$. ……….. (i)
We know that, ${\left| {\overrightarrow x } \right|^2} = \overrightarrow x .\overrightarrow x $.
Therefore,
${\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$.
$
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\overrightarrow a .\overrightarrow b + 2\overrightarrow b .\overrightarrow c + 2\overrightarrow c .\overrightarrow a \\
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) \\
$
Putting the value of $\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $ from equation (i), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$ ……….. (ii)
According to the question, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors and we know that the magnitude of a unit vector is always equal to 1.
Therefore,
${\left| {\overrightarrow a } \right|^2} = {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow c } \right|^2} = 1$ [ $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors ]
Putting this value in equation (ii), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 1 + 1 + 1$
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 3$
Taking square root both sides, we will get
$ \Rightarrow \left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Hence proved, If $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, then we can say that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Note : whenever we ask such types of questions, we have to remember the properties of the scalar product of vectors. First we have to find out what is given in the question then what we have to prove. After that we will use the properties on the given part. We will use the concept of unit vectors and mutually perpendicular vectors. Using this, we can easily prove the question and we will get the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE