Answer
Verified
429.9k+ views
Hint: We are given three vectors and let $\overrightarrow r = 2\overrightarrow a - \overrightarrow b - 3\overrightarrow c $and substituting the given vectors we get the new vector r and in order to find the unit vector we use the formula $\widehat r = \dfrac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$and the magnitude formula is given as $\sqrt {{{\left( {{\text{coefficient of i}}} \right)}^2} + {{\left( {{\text{coefficient of j}}} \right)}^2} + {{\left( {{\text{coefficient of k}}} \right)}^2}} $and after obtaining the unit vector the required vector is obtained by multiplying 6 with the unit vector.
Complete step by step solution:
Let $\overrightarrow r = 2\overrightarrow a - \overrightarrow b - 3\overrightarrow c $
We are given that $\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat {4i} - \widehat {2j} + \widehat {3k},\overrightarrow c = \widehat i - \widehat {2j} + \widehat k$
Substituting this in we get
$
\Rightarrow \overrightarrow r = 2\left( {\widehat i + \widehat j + \widehat k} \right) - \left( {\widehat {4i} - \widehat {2j} + \widehat {3k}} \right) - 3\left( {\widehat i - \widehat {2j} + \widehat k} \right) \\
\Rightarrow \overrightarrow r = 2\widehat i + \widehat {2j} + 2\widehat k - \widehat {4i} + \widehat {2j} - \widehat {3k} - 3\widehat i + 6\widehat j - 3\widehat k \\
\Rightarrow \overrightarrow r = - 5\widehat i + 10\widehat j - \widehat {4k} \\
$
Now the unit vector is given by the formula
$ \Rightarrow \widehat r = \dfrac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$ ……….(1)
Where $\overrightarrow r $is the given vector and $\left| {\overrightarrow r } \right|$is the magnitude of $\overrightarrow r $
The magnitude of a vector is given by $\sqrt {{{\left( {{\text{coefficient of i}}} \right)}^2} + {{\left( {{\text{coefficient of j}}} \right)}^2} + {{\left( {{\text{coefficient of k}}} \right)}^2}} $
Therefore the modulus of is given as
\[
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( {10} \right)}^2} + {{\left( { - 4} \right)}^2}} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {25 + 100 + 16} = \sqrt {141} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {141} \\
\]
Using this in (1) we get
$ \Rightarrow \widehat r = \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }}$
Since we are given the magnitude of the required vector is 6
The vector parallel to r with magnitude 6 is given by $6\times \widehat r$
$
\Rightarrow 6\times \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }} \\
\Rightarrow \dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }} \\
$
Therefore the required vector is $\dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }}$.
Note :
Vectors are parallel if they have the same direction. Both components of one vector must be in the same ratio to the corresponding components of the parallel vector.
A unit vector is a vector of length 1, sometimes also called a direction vector.
Complete step by step solution:
Let $\overrightarrow r = 2\overrightarrow a - \overrightarrow b - 3\overrightarrow c $
We are given that $\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat {4i} - \widehat {2j} + \widehat {3k},\overrightarrow c = \widehat i - \widehat {2j} + \widehat k$
Substituting this in we get
$
\Rightarrow \overrightarrow r = 2\left( {\widehat i + \widehat j + \widehat k} \right) - \left( {\widehat {4i} - \widehat {2j} + \widehat {3k}} \right) - 3\left( {\widehat i - \widehat {2j} + \widehat k} \right) \\
\Rightarrow \overrightarrow r = 2\widehat i + \widehat {2j} + 2\widehat k - \widehat {4i} + \widehat {2j} - \widehat {3k} - 3\widehat i + 6\widehat j - 3\widehat k \\
\Rightarrow \overrightarrow r = - 5\widehat i + 10\widehat j - \widehat {4k} \\
$
Now the unit vector is given by the formula
$ \Rightarrow \widehat r = \dfrac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$ ……….(1)
Where $\overrightarrow r $is the given vector and $\left| {\overrightarrow r } \right|$is the magnitude of $\overrightarrow r $
The magnitude of a vector is given by $\sqrt {{{\left( {{\text{coefficient of i}}} \right)}^2} + {{\left( {{\text{coefficient of j}}} \right)}^2} + {{\left( {{\text{coefficient of k}}} \right)}^2}} $
Therefore the modulus of is given as
\[
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( {10} \right)}^2} + {{\left( { - 4} \right)}^2}} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {25 + 100 + 16} = \sqrt {141} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {141} \\
\]
Using this in (1) we get
$ \Rightarrow \widehat r = \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }}$
Since we are given the magnitude of the required vector is 6
The vector parallel to r with magnitude 6 is given by $6\times \widehat r$
$
\Rightarrow 6\times \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }} \\
\Rightarrow \dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }} \\
$
Therefore the required vector is $\dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }}$.
Note :
Vectors are parallel if they have the same direction. Both components of one vector must be in the same ratio to the corresponding components of the parallel vector.
A unit vector is a vector of length 1, sometimes also called a direction vector.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE