Answer
Verified
499.2k+ views
Hint: Use the formula ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$ and try differentiating it successively. Then multiply with the ‘x’ term and simplify it to get the desired result.
In the question we have to consider the following equation,
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)$
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
$n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ on both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)$
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
$n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)$
Now, in the equation (iii) we will substitute ‘x’ by $\left( \dfrac{p}{q} \right)$, so we get,
$\begin{align}
& n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
& \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
\end{align}$
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
$n\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Combining the like terms, we get
$\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Now, multiplying ${{q}^{n}}$on both side of the above equation we get,
$np+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}$
We can also write like this
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}$
Combining the like terms, we get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)$
We were given that ‘p + q = 1’, so, we can replace $\left( 1-p \right)$ by $q$, the above equation can be written as,
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)$
Opening the bracket,w e get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}$
Hence Proved
Note: In these type of questions, student generally go wrong while differentiating;
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$with respect to $x$.
Another approach of this problem is
\[\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}\]
And convert this to the formula, ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$
In this way we can prove LHS is equal to RHS.
In the question we have to consider the following equation,
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)$
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
$n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ on both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)$
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
$n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)$
Now, in the equation (iii) we will substitute ‘x’ by $\left( \dfrac{p}{q} \right)$, so we get,
$\begin{align}
& n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
& \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
\end{align}$
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
$n\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Combining the like terms, we get
$\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Now, multiplying ${{q}^{n}}$on both side of the above equation we get,
$np+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}$
We can also write like this
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}$
Combining the like terms, we get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)$
We were given that ‘p + q = 1’, so, we can replace $\left( 1-p \right)$ by $q$, the above equation can be written as,
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)$
Opening the bracket,w e get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}$
Hence Proved
Note: In these type of questions, student generally go wrong while differentiating;
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$with respect to $x$.
Another approach of this problem is
\[\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}\]
And convert this to the formula, ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$
In this way we can prove LHS is equal to RHS.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE