Answer
Verified
499.2k+ views
There is a property of a parallelogram. The two diagonals of a parallelogram bisect each other. So, using section formula, find the coordinates of mid - point of the both the diagonals and equate the two obtained coordinates.
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
Let us consider a line $AC$ with a point $B$ lying on it. Let us assume that point $B$ is dividing this line $AC$ in ratio of $m:n$.
If the coordinates of $A$ is $\left( x',y' \right)$ and the coordinates of $C$ is $\left( x'',y'' \right)$, then, from the section formula, the coordinates of $B$ are,
\[\left( \dfrac{mx''+nx'}{m+n},\dfrac{my''+ny'}{m+n} \right)................\left( 1 \right)\]
In the question, we are given a parallelogram PQRS having vertices P (1, 2), Q (4, 6), R (5, 7) and S (a, b).
In a parallelogram, the two diagonals bisect each other. So, the point O is the mid - point of the diagonal PR and diagonal QS. This means that the point O divides the diagonal PR and diagonal QS in the ratio 1:1.
Using section formula $\left( 1 \right)$, the coordinate of O as a mid - point of PR is,
\[\begin{align}
& \left( \dfrac{1.5+1.1}{1+1},\dfrac{1.7+1.2}{1+1} \right) \\
& \Rightarrow \left( \dfrac{6}{2},\dfrac{9}{2} \right)................\left( 2 \right) \\
\end{align}\]
Using section formula $\left( 1 \right)$, the coordinate of O as a mid - point of QS is,
\[\begin{align}
& \left( \dfrac{1.a+1.4}{1+1},\dfrac{1.b+1.6}{1+1} \right) \\
& \Rightarrow \left( \dfrac{a+4}{2},\dfrac{b+6}{2} \right)..................\left( 3 \right) \\
\end{align}\]
Since coordinate $\left( 2 \right)$ and coordinate $\left( 3 \right)$ are the coordinate of the same of point i.e. O, we can equate x and y coordinate of coordinate $\left( 2 \right)$ and coordinate $\left( 3 \right)$.
Equating x coordinate, we get,
$\begin{align}
& \dfrac{a+4}{2}=\dfrac{6}{2} \\
& \Rightarrow a+4=6 \\
& \Rightarrow a=2 \\
\end{align}$
Equating y coordinate, we get,
$\begin{align}
& \dfrac{b+6}{2}=\dfrac{9}{2} \\
& \Rightarrow b+6=9 \\
& \Rightarrow b=3 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may commit a mistake while drawing the parallelogram PQRS. Whenever we are given a parallelogram ABCD, the point A, B, C, D must be in clockwise or anticlockwise manner. If we plot these points in any random order, there is a possibility that we may get an incorrect answer.
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
Let us consider a line $AC$ with a point $B$ lying on it. Let us assume that point $B$ is dividing this line $AC$ in ratio of $m:n$.
If the coordinates of $A$ is $\left( x',y' \right)$ and the coordinates of $C$ is $\left( x'',y'' \right)$, then, from the section formula, the coordinates of $B$ are,
\[\left( \dfrac{mx''+nx'}{m+n},\dfrac{my''+ny'}{m+n} \right)................\left( 1 \right)\]
In the question, we are given a parallelogram PQRS having vertices P (1, 2), Q (4, 6), R (5, 7) and S (a, b).
In a parallelogram, the two diagonals bisect each other. So, the point O is the mid - point of the diagonal PR and diagonal QS. This means that the point O divides the diagonal PR and diagonal QS in the ratio 1:1.
Using section formula $\left( 1 \right)$, the coordinate of O as a mid - point of PR is,
\[\begin{align}
& \left( \dfrac{1.5+1.1}{1+1},\dfrac{1.7+1.2}{1+1} \right) \\
& \Rightarrow \left( \dfrac{6}{2},\dfrac{9}{2} \right)................\left( 2 \right) \\
\end{align}\]
Using section formula $\left( 1 \right)$, the coordinate of O as a mid - point of QS is,
\[\begin{align}
& \left( \dfrac{1.a+1.4}{1+1},\dfrac{1.b+1.6}{1+1} \right) \\
& \Rightarrow \left( \dfrac{a+4}{2},\dfrac{b+6}{2} \right)..................\left( 3 \right) \\
\end{align}\]
Since coordinate $\left( 2 \right)$ and coordinate $\left( 3 \right)$ are the coordinate of the same of point i.e. O, we can equate x and y coordinate of coordinate $\left( 2 \right)$ and coordinate $\left( 3 \right)$.
Equating x coordinate, we get,
$\begin{align}
& \dfrac{a+4}{2}=\dfrac{6}{2} \\
& \Rightarrow a+4=6 \\
& \Rightarrow a=2 \\
\end{align}$
Equating y coordinate, we get,
$\begin{align}
& \dfrac{b+6}{2}=\dfrac{9}{2} \\
& \Rightarrow b+6=9 \\
& \Rightarrow b=3 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may commit a mistake while drawing the parallelogram PQRS. Whenever we are given a parallelogram ABCD, the point A, B, C, D must be in clockwise or anticlockwise manner. If we plot these points in any random order, there is a possibility that we may get an incorrect answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE