Answer
Verified
395.4k+ views
Hint: In the question we are told that the p is a prime number. A prime number is the number which has factors itself and 1.
In this case p has the factors p and 1. Follow the procedure of factorization and find lcm stepwise.
Complete step-by-step answer:
In this case $ p,{p^2},{p^3} $
P is a prime number. We can find the factors of each term as
\[
p = p \times 1 \\
{p^2} = p \times p \times 1 \\
{p^3} = p \times p \times p \times 1 \;
\]
In this case we can observe the factors of the given terms and see if any common factors exist.
Taking common factors in all $ p,{p^2},{p^3} $ and continuing till the end.
The common in three and two of them will be multiplied only once and the remaining all factors will be multiplied to the result.
This will help us In getting the answers by applying the basic definition of lowest common multiple.
It is a multiple which can be divided by all the given numbers and will be the lowest of such categories to exist.
So, finally solving,
We get the final solution as $ {p^3} $ .
$ {p^3} $ is the lcm of given numbers $ p,{p^2},{p^3} $ .
So, the correct answer is “ $ {p^3} $ ”.
Note: In the process of finding the lcm we must factorise the components. If in case hcf is given and we need to find the lcm product of two numbers = product of lcm and hcf.
Understand that hcf is a factor and lcm is multiple of given numbers. Almost every time lcm > hcf.
In this case p has the factors p and 1. Follow the procedure of factorization and find lcm stepwise.
Complete step-by-step answer:
In this case $ p,{p^2},{p^3} $
P is a prime number. We can find the factors of each term as
\[
p = p \times 1 \\
{p^2} = p \times p \times 1 \\
{p^3} = p \times p \times p \times 1 \;
\]
In this case we can observe the factors of the given terms and see if any common factors exist.
Taking common factors in all $ p,{p^2},{p^3} $ and continuing till the end.
The common in three and two of them will be multiplied only once and the remaining all factors will be multiplied to the result.
This will help us In getting the answers by applying the basic definition of lowest common multiple.
It is a multiple which can be divided by all the given numbers and will be the lowest of such categories to exist.
So, finally solving,
We get the final solution as $ {p^3} $ .
$ {p^3} $ is the lcm of given numbers $ p,{p^2},{p^3} $ .
So, the correct answer is “ $ {p^3} $ ”.
Note: In the process of finding the lcm we must factorise the components. If in case hcf is given and we need to find the lcm product of two numbers = product of lcm and hcf.
Understand that hcf is a factor and lcm is multiple of given numbers. Almost every time lcm > hcf.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE