Answer
Verified
497.1k+ views
Hint: Roots of quadratic equation are real if and only if the discriminant i.e. $\Delta ={{b}^{2}}-4ac>0$, we will use this concept to solve the above problem.
Complete step-by-step answer:
Given quadratic equations are \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] . Let us name them as equation (1) and equation (2) respectively.
Now we will find discriminants for equation (1) and equation (2).
The above quadratic equations have real roots, so we will find discriminants for equation (1) and equation (2) and then solve the question.
Now we will find the discriminant of equation (1) as b=p, a=1, c=q.
${{\Delta }_{1}}={{b}^{2}}-4ac={{p}^{2}}-4q$
The discriminant of equation (1) is ${{p}^{2}}-4q$ Let this be equation (3).
Now we will find the discriminant of equation (1) as b=r, a=1, c=s.
${{\Delta }_{2}}={{b}^{2}}-4ac={{r}^{2}}-4s$
The discriminant of equation (2) is ${{r}^{2}}-4s$ and let this be equation (4).
Now we will add equation (3) and equation (4) that is adding ${{\Delta }_{1}}+{{\Delta }_{2}}$ , we will get
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}-4q)+({{r}^{2}}-4s)$.
Further simplifying it we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}+{{r}^{2}}-4q-4s)$, Now we will take -2 common from $-4q-4s$ we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
We know that $2q+2s=pr$ , as it was given in the above question.
Now we will substitute it in equation 5.
We will get, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(pr))$
We know a basic algebraic formula, ${{a}^{2}}+{{b}^{2}}-2ab={{(a-b)}^{2}}$ now we will use it in above equation.
$(({{p}^{2}}+{{r}^{2}})-2(pr))$ can be written as ${{(p-r)}^{2}}$.
So, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}={{(p-r)}^{2}}$ which is always greater than or equals to 0.
So, ${{\Delta }_{1}}+{{\Delta }_{2}}\ge 0$
This means both ${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ cannot be negative simultaneously which means at least one or both
${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ should be greater than zero, which means at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Note: Analysing is the most important thing that has to be done to solve a problem, basic algebraic formula has to be remembered and can be used wherever needed and the perfect square cannot be negative. There are three types of roots and their nature can be determined by $\Delta $. If $\Delta $ >0 roots are real and if $\Delta $ <0 roots are imaginary and $\Delta $ =0, roots are equal.
Complete step-by-step answer:
Given quadratic equations are \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] . Let us name them as equation (1) and equation (2) respectively.
Now we will find discriminants for equation (1) and equation (2).
The above quadratic equations have real roots, so we will find discriminants for equation (1) and equation (2) and then solve the question.
Now we will find the discriminant of equation (1) as b=p, a=1, c=q.
${{\Delta }_{1}}={{b}^{2}}-4ac={{p}^{2}}-4q$
The discriminant of equation (1) is ${{p}^{2}}-4q$ Let this be equation (3).
Now we will find the discriminant of equation (1) as b=r, a=1, c=s.
${{\Delta }_{2}}={{b}^{2}}-4ac={{r}^{2}}-4s$
The discriminant of equation (2) is ${{r}^{2}}-4s$ and let this be equation (4).
Now we will add equation (3) and equation (4) that is adding ${{\Delta }_{1}}+{{\Delta }_{2}}$ , we will get
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}-4q)+({{r}^{2}}-4s)$.
Further simplifying it we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=({{p}^{2}}+{{r}^{2}}-4q-4s)$, Now we will take -2 common from $-4q-4s$ we will get,
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
We know that $2q+2s=pr$ , as it was given in the above question.
Now we will substitute it in equation 5.
We will get, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(2q+2s))\cdot \cdot \cdot \cdot \cdot \left( 5 \right)$
$\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}=(({{p}^{2}}+{{r}^{2}})-2(pr))$
We know a basic algebraic formula, ${{a}^{2}}+{{b}^{2}}-2ab={{(a-b)}^{2}}$ now we will use it in above equation.
$(({{p}^{2}}+{{r}^{2}})-2(pr))$ can be written as ${{(p-r)}^{2}}$.
So, $\Rightarrow {{\Delta }_{1}}+{{\Delta }_{2}}={{(p-r)}^{2}}$ which is always greater than or equals to 0.
So, ${{\Delta }_{1}}+{{\Delta }_{2}}\ge 0$
This means both ${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ cannot be negative simultaneously which means at least one or both
${{\Delta }_{1}}$ and ${{\Delta }_{2}}$ should be greater than zero, which means at least one of the equations \[{{x}^{2}}+px+q=0\] and \[{{x}^{2}}+rx+s=0\] has real roots.
Note: Analysing is the most important thing that has to be done to solve a problem, basic algebraic formula has to be remembered and can be used wherever needed and the perfect square cannot be negative. There are three types of roots and their nature can be determined by $\Delta $. If $\Delta $ >0 roots are real and if $\Delta $ <0 roots are imaginary and $\Delta $ =0, roots are equal.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE