Answer
Verified
429.9k+ views
Hint: Find the area of triangle by taking three different sets of base and height. Then express ${{p}_{1}}$,${{p}_{2}}$ and ${{p}_{3}}$ in terms of area. After getting the values of ${{p}_{1}}$,${{p}_{2}}$ and ${{p}_{3}}$ multiply them and do the necessary simplification to get the required result.
Complete step by step answer:
Let us consider a triangle $\vartriangle ABC$ with sides a, b and c.
${{p}_{1}},{{p}_{2}},{{p}_{3}}$ are the perpendiculars drawn from the vertices A, B and C respectively.
We know the area of triangle $=\dfrac{1}{2}\times base\times height$
Again let us denote the area of triangle ABC as ‘A’.
Here the area can be expressed in three different ways as we have three different sets of base and height.
So, the area of triangle ABC
$\begin{align}
& A=\dfrac{1}{2}\times BC\times AD \\
& \Rightarrow A=\dfrac{1}{2}\times a\times {{p}_{1}} \\
\end{align}$
So, ${{p}_{1}}$ can be written as
$\Rightarrow {{p}_{1}}=\dfrac{2A}{a}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times BE \\
& \Rightarrow A=\dfrac{1}{2}\times b\times {{p}_{2}} \\
\end{align}$
So, ${{p}_{2}}$ can be written as
$\Rightarrow {{p}_{2}}=\dfrac{2A}{b}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times CF \\
& \Rightarrow A=\dfrac{1}{2}\times c\times {{p}_{3}} \\
\end{align}$
So, ${{p}_{3}}$ can be written as
$\Rightarrow {{p}_{3}}=\dfrac{2A}{c}$
Hence,
$\begin{align}
& {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{2A}{a}\times \dfrac{2A}{b}\times \dfrac{2A}{c} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{A}^{3}}}{abc} \\
\end{align}$
Again as we know \[A=\dfrac{abc}{4R}\] (from sine rule of triangle) where ‘R’ is the radius of the circumcircle.
So, putting the value of ‘A’ in the above expression, we get
$\begin{align}
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{\left( \dfrac{abc}{4R} \right)}^{3}}}{abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{a}^{3}}{{b}^{3}}{{c}^{3}}}{64{{R}^{3}}abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{{{a}^{2}}{{b}^{2}}{{c}^{2}}}{8{{R}^{3}}} \\
\end{align}$
This is the required solution of the given question.
Note: For the above triangle $\vartriangle ABC$ with sides a, b, c and area ‘A’, the measure of circumradius ‘R’ is $R=\dfrac{abc}{4A}$.
Which can be written as
\[\Rightarrow A=\dfrac{abc}{4R}\]
This value of area is used in the above solution to get the result in a simplified form.
Complete step by step answer:
Let us consider a triangle $\vartriangle ABC$ with sides a, b and c.
${{p}_{1}},{{p}_{2}},{{p}_{3}}$ are the perpendiculars drawn from the vertices A, B and C respectively.
We know the area of triangle $=\dfrac{1}{2}\times base\times height$
Again let us denote the area of triangle ABC as ‘A’.
Here the area can be expressed in three different ways as we have three different sets of base and height.
So, the area of triangle ABC
$\begin{align}
& A=\dfrac{1}{2}\times BC\times AD \\
& \Rightarrow A=\dfrac{1}{2}\times a\times {{p}_{1}} \\
\end{align}$
So, ${{p}_{1}}$ can be written as
$\Rightarrow {{p}_{1}}=\dfrac{2A}{a}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times BE \\
& \Rightarrow A=\dfrac{1}{2}\times b\times {{p}_{2}} \\
\end{align}$
So, ${{p}_{2}}$ can be written as
$\Rightarrow {{p}_{2}}=\dfrac{2A}{b}$
Again,
$\begin{align}
& A=\dfrac{1}{2}\times AC\times CF \\
& \Rightarrow A=\dfrac{1}{2}\times c\times {{p}_{3}} \\
\end{align}$
So, ${{p}_{3}}$ can be written as
$\Rightarrow {{p}_{3}}=\dfrac{2A}{c}$
Hence,
$\begin{align}
& {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{2A}{a}\times \dfrac{2A}{b}\times \dfrac{2A}{c} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{A}^{3}}}{abc} \\
\end{align}$
Again as we know \[A=\dfrac{abc}{4R}\] (from sine rule of triangle) where ‘R’ is the radius of the circumcircle.
So, putting the value of ‘A’ in the above expression, we get
$\begin{align}
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{\left( \dfrac{abc}{4R} \right)}^{3}}}{abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{8{{a}^{3}}{{b}^{3}}{{c}^{3}}}{64{{R}^{3}}abc} \\
& \Rightarrow {{p}_{1}}{{p}_{2}}{{p}_{3}}=\dfrac{{{a}^{2}}{{b}^{2}}{{c}^{2}}}{8{{R}^{3}}} \\
\end{align}$
This is the required solution of the given question.
Note: For the above triangle $\vartriangle ABC$ with sides a, b, c and area ‘A’, the measure of circumradius ‘R’ is $R=\dfrac{abc}{4A}$.
Which can be written as
\[\Rightarrow A=\dfrac{abc}{4R}\]
This value of area is used in the above solution to get the result in a simplified form.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers