
If $\pi < \theta < \dfrac{{3\pi }}{2}$ the expression $\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$ is equal to
- (A) $2$ (B) $2 + 4\sin \theta $ (C) $2 - 4\sin \theta $ (D) $0$
- (A) $2$ (B) $2 + 4\sin \theta $ (C) $2 - 4\sin \theta $ (D) $0$
Answer
592.2k+ views
Hint- Here in this question we will use some basic trigonometric identities as
$\sin 2\alpha = 2\sin \alpha \cos \alpha $
${\sin ^2}\alpha + {\cos ^2}\alpha = 1$
$1 + 2{\cos ^2}\alpha = \cos 2\alpha $
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
Complete step by step solution-
We have to simplify the expression$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$; to do this we will use some basic identities here.
$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
$ = \sqrt {4{{\sin }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$ [ ]
On opening the bracket,
$ = \sqrt {4{{\sin }^4}\theta + \left( {4 \times {{\sin }^2}\theta \times {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
On taking the common term from the terms under the square root,
\[ = \sqrt {4{{\sin }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta \times \left( 1 \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\] [ ]
On splitting the $4$ in to factors,
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {\cos \left( {2 \times \left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right) + 1} \right)\] [ ]
\[ = 2\sin \theta + 2 \times \left( {\cos \left( {\dfrac{\pi }{2} - \theta } \right) + 1} \right)\]
\[ = 2\sin \theta + 2 \times \left( {\sin \theta + 1} \right)\] []\[ = 2\sin \theta + 2\sin \theta + 2\]
\[ = 4\sin \theta + 2\]
Hence, $\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 4\sin \theta + 2$
Therefore,Option B is the correct answer
Note: To solve this type of question we just need to learn all the identities such that we can find the particular form in the given expression so that an identity can be applied.Also, care has to be taken to apply the appropriate identity in accordance to the problem given
$\sin 2\alpha = 2\sin \alpha \cos \alpha $
${\sin ^2}\alpha + {\cos ^2}\alpha = 1$
$1 + 2{\cos ^2}\alpha = \cos 2\alpha $
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
Complete step by step solution-
We have to simplify the expression$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$; to do this we will use some basic identities here.
$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
$ = \sqrt {4{{\sin }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$ [ ]
On opening the bracket,
$ = \sqrt {4{{\sin }^4}\theta + \left( {4 \times {{\sin }^2}\theta \times {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
On taking the common term from the terms under the square root,
\[ = \sqrt {4{{\sin }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta \times \left( 1 \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\] [ ]
On splitting the $4$ in to factors,
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {\cos \left( {2 \times \left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right) + 1} \right)\] [ ]
\[ = 2\sin \theta + 2 \times \left( {\cos \left( {\dfrac{\pi }{2} - \theta } \right) + 1} \right)\]
\[ = 2\sin \theta + 2 \times \left( {\sin \theta + 1} \right)\] []\[ = 2\sin \theta + 2\sin \theta + 2\]
\[ = 4\sin \theta + 2\]
Hence, $\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 4\sin \theta + 2$
Therefore,Option B is the correct answer
Note: To solve this type of question we just need to learn all the identities such that we can find the particular form in the given expression so that an identity can be applied.Also, care has to be taken to apply the appropriate identity in accordance to the problem given
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

