If r is the radius of incircle and ${{r}_{1}},{{r}_{2}},{{r}_{3}}$ are the radii of the ex-circles of the triangle ABC opposite to angles $A,B,C$ respectively then find $B$ if $r{{r}_{2}}={{r}_{1}}{{r}_{3}}$. \[\]
Answer
Verified
122.7k+ views
Hint: We substitute $r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{\left( s-a \right)},{{r}_{2}}=\dfrac{\Delta }{\left( s-b \right)},{{r}_{3}}=\dfrac{\Delta }{\left( s-c \right)}$ where $a,$$b$,$c$ are the lengths of the sides BC, AC,AB respectively, $s$ is the semi-perimeter of the triangle and $\Delta $ is the area of the triangle in the given equation $r{{r}_{2}}={{r}_{1}}{{r}_{3}}$ . We proceed to simplify the equation until we have to use $r=\left( s-b \right)\tan \dfrac{B}{2}$ and then we solve for $B$ to get the measurement of $B$.
Complete step-by-step solution:
We are given that $r$ is the radius of in-circle and ${{r}_{1}},{{r}_{2}},{{r}_{3}}$ are the radii of the ex-circles of the triangle ABC opposite to angles $A,B,C$ respectively. We know from the formula that
\[r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{\left( s-a \right)},{{r}_{2}}=\dfrac{\Delta }{\left( s-b \right)},{{r}_{3}}=\dfrac{\Delta }{\left( s-c \right)}....(1)\]
Where the $a,$$b$,$c$ are the lengths of the sides BC, AC, AB respectively, $s$ is the semi-perimeter of the triangle and $\Delta $ is the area of the triangle.
We also know the formula involving tangent and length of the sides as
\[r=\left( s-a \right)\tan \dfrac{A}{2}=\left( s-b \right)\tan \dfrac{B}{2}=\left( s-c \right)\tan \dfrac{C}{2}...(2)\]
We know that the area of the triangle with semi-perimeter $s$ and the lengths of the sides $a,$$b$,$c$ is
\[\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}...(3)\]
We are given in the question that
\[r{{r}_{2}}={{r}_{1}}{{r}_{3}}\]
We are asked to find the measurement of the angle B. We put the values of $r,{{r}_{1}},{{r}_{2}},{{r}_{3}}$ in terms of area, semi-perimeter and side in the given equation and get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{s\left( s-b \right)}=\dfrac{\Delta }{s\left( s-a \right)}\times \dfrac{\Delta }{s\left( s-c \right)} \\
\end{align}\]
We can divide $\Delta $ both side and then cross multiply to get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{\left( s-b \right)}=\dfrac{\Delta }{\left( s-a \right)}\times \dfrac{\Delta }{\left( s-c \right)} \\
& \Rightarrow s\left( s-b \right)=\left( s-a \right)\left( s-c \right) \\
\end{align}\]
We now multiply $s\left( s-b \right)$ both side and get ,
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}=s\left( s-b \right)\left( s-a \right)\left( s-c \right)\]
We use the formula (3) and replace the right hand side with ${{\Delta }^{2}}$. SO we have
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}={{\Delta }^{2}}\]
We now divide ${{\left( s\left( s-b \right) \right)}^{2}}$ both side and get ,
\[\Rightarrow {{\left( \dfrac{\Delta }{s\left( s-b \right)} \right)}^{2}}=1\]
We use the formula (2) and get ,
\[\Rightarrow {{\left( \tan \dfrac{B}{2} \right)}^{2}}=1\]
We solve above quadratic equation and get ,
\[\begin{align}
& \Rightarrow \tan \dfrac{B}{2}=1,\tan \dfrac{B}{2}=-1 \\
& \Rightarrow \dfrac{B}{2}=\dfrac{\pi }{4},\dfrac{B}{2}=\dfrac{5\pi }{4} \\
& \Rightarrow B=\dfrac{\pi }{2},B=\dfrac{10\pi }{4} \\
\end{align}\]
We reject the result $B=\dfrac{10\pi }{4}$ because in triangle no angle can be greater than $\pi .$ So the $B=\dfrac{\pi }{2}={{90}^{\circ }}$ , a right angle.
Note: We note that the incircle which touches all sides in the interior of the triangle has its center called incentre as the point of intersection of angle bisectors while excircles touch only 1 side in the exterior with center at the exterior known as excentre. The general solution for $\tan x=\tan \alpha $ is $x=n\pi +\alpha $ where $n$ is an integer. We have rejected other values because our problem was limited to a triangle.
Complete step-by-step solution:
We are given that $r$ is the radius of in-circle and ${{r}_{1}},{{r}_{2}},{{r}_{3}}$ are the radii of the ex-circles of the triangle ABC opposite to angles $A,B,C$ respectively. We know from the formula that
\[r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{\left( s-a \right)},{{r}_{2}}=\dfrac{\Delta }{\left( s-b \right)},{{r}_{3}}=\dfrac{\Delta }{\left( s-c \right)}....(1)\]
Where the $a,$$b$,$c$ are the lengths of the sides BC, AC, AB respectively, $s$ is the semi-perimeter of the triangle and $\Delta $ is the area of the triangle.
We also know the formula involving tangent and length of the sides as
\[r=\left( s-a \right)\tan \dfrac{A}{2}=\left( s-b \right)\tan \dfrac{B}{2}=\left( s-c \right)\tan \dfrac{C}{2}...(2)\]
We know that the area of the triangle with semi-perimeter $s$ and the lengths of the sides $a,$$b$,$c$ is
\[\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}...(3)\]
We are given in the question that
\[r{{r}_{2}}={{r}_{1}}{{r}_{3}}\]
We are asked to find the measurement of the angle B. We put the values of $r,{{r}_{1}},{{r}_{2}},{{r}_{3}}$ in terms of area, semi-perimeter and side in the given equation and get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{s\left( s-b \right)}=\dfrac{\Delta }{s\left( s-a \right)}\times \dfrac{\Delta }{s\left( s-c \right)} \\
\end{align}\]
We can divide $\Delta $ both side and then cross multiply to get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{\left( s-b \right)}=\dfrac{\Delta }{\left( s-a \right)}\times \dfrac{\Delta }{\left( s-c \right)} \\
& \Rightarrow s\left( s-b \right)=\left( s-a \right)\left( s-c \right) \\
\end{align}\]
We now multiply $s\left( s-b \right)$ both side and get ,
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}=s\left( s-b \right)\left( s-a \right)\left( s-c \right)\]
We use the formula (3) and replace the right hand side with ${{\Delta }^{2}}$. SO we have
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}={{\Delta }^{2}}\]
We now divide ${{\left( s\left( s-b \right) \right)}^{2}}$ both side and get ,
\[\Rightarrow {{\left( \dfrac{\Delta }{s\left( s-b \right)} \right)}^{2}}=1\]
We use the formula (2) and get ,
\[\Rightarrow {{\left( \tan \dfrac{B}{2} \right)}^{2}}=1\]
We solve above quadratic equation and get ,
\[\begin{align}
& \Rightarrow \tan \dfrac{B}{2}=1,\tan \dfrac{B}{2}=-1 \\
& \Rightarrow \dfrac{B}{2}=\dfrac{\pi }{4},\dfrac{B}{2}=\dfrac{5\pi }{4} \\
& \Rightarrow B=\dfrac{\pi }{2},B=\dfrac{10\pi }{4} \\
\end{align}\]
We reject the result $B=\dfrac{10\pi }{4}$ because in triangle no angle can be greater than $\pi .$ So the $B=\dfrac{\pi }{2}={{90}^{\circ }}$ , a right angle.
Note: We note that the incircle which touches all sides in the interior of the triangle has its center called incentre as the point of intersection of angle bisectors while excircles touch only 1 side in the exterior with center at the exterior known as excentre. The general solution for $\tan x=\tan \alpha $ is $x=n\pi +\alpha $ where $n$ is an integer. We have rejected other values because our problem was limited to a triangle.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Course 2025: Get All the Relevant Details
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2022 July 28 Shift 2 Question Paper with Answer Keys & Solutions
Introduction to Dimensions With Different Units and Formula for JEE