
If r is the radius of incircle and ${{r}_{1}},{{r}_{2}},{{r}_{3}}$ are the radii of the ex-circles of the triangle ABC opposite to angles $A,B,C$ respectively then find $B$ if $r{{r}_{2}}={{r}_{1}}{{r}_{3}}$. \[\]
Answer
140.7k+ views
Hint: We substitute $r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{\left( s-a \right)},{{r}_{2}}=\dfrac{\Delta }{\left( s-b \right)},{{r}_{3}}=\dfrac{\Delta }{\left( s-c \right)}$ where $a,$$b$,$c$ are the lengths of the sides BC, AC,AB respectively, $s$ is the semi-perimeter of the triangle and $\Delta $ is the area of the triangle in the given equation $r{{r}_{2}}={{r}_{1}}{{r}_{3}}$ . We proceed to simplify the equation until we have to use $r=\left( s-b \right)\tan \dfrac{B}{2}$ and then we solve for $B$ to get the measurement of $B$.
Complete step-by-step solution:

We are given that $r$ is the radius of in-circle and ${{r}_{1}},{{r}_{2}},{{r}_{3}}$ are the radii of the ex-circles of the triangle ABC opposite to angles $A,B,C$ respectively. We know from the formula that
\[r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{\left( s-a \right)},{{r}_{2}}=\dfrac{\Delta }{\left( s-b \right)},{{r}_{3}}=\dfrac{\Delta }{\left( s-c \right)}....(1)\]
Where the $a,$$b$,$c$ are the lengths of the sides BC, AC, AB respectively, $s$ is the semi-perimeter of the triangle and $\Delta $ is the area of the triangle.
We also know the formula involving tangent and length of the sides as
\[r=\left( s-a \right)\tan \dfrac{A}{2}=\left( s-b \right)\tan \dfrac{B}{2}=\left( s-c \right)\tan \dfrac{C}{2}...(2)\]
We know that the area of the triangle with semi-perimeter $s$ and the lengths of the sides $a,$$b$,$c$ is
\[\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}...(3)\]
We are given in the question that
\[r{{r}_{2}}={{r}_{1}}{{r}_{3}}\]
We are asked to find the measurement of the angle B. We put the values of $r,{{r}_{1}},{{r}_{2}},{{r}_{3}}$ in terms of area, semi-perimeter and side in the given equation and get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{s\left( s-b \right)}=\dfrac{\Delta }{s\left( s-a \right)}\times \dfrac{\Delta }{s\left( s-c \right)} \\
\end{align}\]
We can divide $\Delta $ both side and then cross multiply to get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{\left( s-b \right)}=\dfrac{\Delta }{\left( s-a \right)}\times \dfrac{\Delta }{\left( s-c \right)} \\
& \Rightarrow s\left( s-b \right)=\left( s-a \right)\left( s-c \right) \\
\end{align}\]
We now multiply $s\left( s-b \right)$ both side and get ,
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}=s\left( s-b \right)\left( s-a \right)\left( s-c \right)\]
We use the formula (3) and replace the right hand side with ${{\Delta }^{2}}$. SO we have
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}={{\Delta }^{2}}\]
We now divide ${{\left( s\left( s-b \right) \right)}^{2}}$ both side and get ,
\[\Rightarrow {{\left( \dfrac{\Delta }{s\left( s-b \right)} \right)}^{2}}=1\]
We use the formula (2) and get ,
\[\Rightarrow {{\left( \tan \dfrac{B}{2} \right)}^{2}}=1\]
We solve above quadratic equation and get ,
\[\begin{align}
& \Rightarrow \tan \dfrac{B}{2}=1,\tan \dfrac{B}{2}=-1 \\
& \Rightarrow \dfrac{B}{2}=\dfrac{\pi }{4},\dfrac{B}{2}=\dfrac{5\pi }{4} \\
& \Rightarrow B=\dfrac{\pi }{2},B=\dfrac{10\pi }{4} \\
\end{align}\]
We reject the result $B=\dfrac{10\pi }{4}$ because in triangle no angle can be greater than $\pi .$ So the $B=\dfrac{\pi }{2}={{90}^{\circ }}$ , a right angle.
Note: We note that the incircle which touches all sides in the interior of the triangle has its center called incentre as the point of intersection of angle bisectors while excircles touch only 1 side in the exterior with center at the exterior known as excentre. The general solution for $\tan x=\tan \alpha $ is $x=n\pi +\alpha $ where $n$ is an integer. We have rejected other values because our problem was limited to a triangle.
Complete step-by-step solution:

We are given that $r$ is the radius of in-circle and ${{r}_{1}},{{r}_{2}},{{r}_{3}}$ are the radii of the ex-circles of the triangle ABC opposite to angles $A,B,C$ respectively. We know from the formula that
\[r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{\left( s-a \right)},{{r}_{2}}=\dfrac{\Delta }{\left( s-b \right)},{{r}_{3}}=\dfrac{\Delta }{\left( s-c \right)}....(1)\]
Where the $a,$$b$,$c$ are the lengths of the sides BC, AC, AB respectively, $s$ is the semi-perimeter of the triangle and $\Delta $ is the area of the triangle.
We also know the formula involving tangent and length of the sides as
\[r=\left( s-a \right)\tan \dfrac{A}{2}=\left( s-b \right)\tan \dfrac{B}{2}=\left( s-c \right)\tan \dfrac{C}{2}...(2)\]
We know that the area of the triangle with semi-perimeter $s$ and the lengths of the sides $a,$$b$,$c$ is
\[\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}...(3)\]
We are given in the question that
\[r{{r}_{2}}={{r}_{1}}{{r}_{3}}\]
We are asked to find the measurement of the angle B. We put the values of $r,{{r}_{1}},{{r}_{2}},{{r}_{3}}$ in terms of area, semi-perimeter and side in the given equation and get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{s\left( s-b \right)}=\dfrac{\Delta }{s\left( s-a \right)}\times \dfrac{\Delta }{s\left( s-c \right)} \\
\end{align}\]
We can divide $\Delta $ both side and then cross multiply to get ,
\[\begin{align}
& r{{r}_{2}}={{r}_{1}}{{r}_{3}} \\
& \Rightarrow \dfrac{\Delta }{s}\times \dfrac{\Delta }{\left( s-b \right)}=\dfrac{\Delta }{\left( s-a \right)}\times \dfrac{\Delta }{\left( s-c \right)} \\
& \Rightarrow s\left( s-b \right)=\left( s-a \right)\left( s-c \right) \\
\end{align}\]
We now multiply $s\left( s-b \right)$ both side and get ,
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}=s\left( s-b \right)\left( s-a \right)\left( s-c \right)\]
We use the formula (3) and replace the right hand side with ${{\Delta }^{2}}$. SO we have
\[\Rightarrow {{\left( s\left( s-b \right) \right)}^{2}}={{\Delta }^{2}}\]
We now divide ${{\left( s\left( s-b \right) \right)}^{2}}$ both side and get ,
\[\Rightarrow {{\left( \dfrac{\Delta }{s\left( s-b \right)} \right)}^{2}}=1\]
We use the formula (2) and get ,
\[\Rightarrow {{\left( \tan \dfrac{B}{2} \right)}^{2}}=1\]
We solve above quadratic equation and get ,
\[\begin{align}
& \Rightarrow \tan \dfrac{B}{2}=1,\tan \dfrac{B}{2}=-1 \\
& \Rightarrow \dfrac{B}{2}=\dfrac{\pi }{4},\dfrac{B}{2}=\dfrac{5\pi }{4} \\
& \Rightarrow B=\dfrac{\pi }{2},B=\dfrac{10\pi }{4} \\
\end{align}\]
We reject the result $B=\dfrac{10\pi }{4}$ because in triangle no angle can be greater than $\pi .$ So the $B=\dfrac{\pi }{2}={{90}^{\circ }}$ , a right angle.
Note: We note that the incircle which touches all sides in the interior of the triangle has its center called incentre as the point of intersection of angle bisectors while excircles touch only 1 side in the exterior with center at the exterior known as excentre. The general solution for $\tan x=\tan \alpha $ is $x=n\pi +\alpha $ where $n$ is an integer. We have rejected other values because our problem was limited to a triangle.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

A circular field has a circumference of 360km Two cyclists class 11 maths JEE_Main

JEE Mains 2025 Syllabus

JEE Main 2025: Physics Average Speed Formula Derivation with Solved Examples

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 13 Statistics

The number of common tangents of the circles given class 11 maths JEE_Main
