If roots of the equation $2{x^{^2}} - 4x + 2\sin \theta - 1 = 0$ are of opposite sign$(where \theta \in (0,\pi )),$ then $\theta $ belongs to
(A)$(\dfrac{\pi }{6},\dfrac{{5\pi }}{6})$
(B)$(0,\dfrac{\pi }{6}) \cup (\dfrac{{5\pi }}{6},\pi )$
(C)$(0,\dfrac{{5\pi }}{6})$
(D)$(0,\pi )$
Answer
Verified
477k+ views
Hint: Determinant of this quadratic equation should be greater than 0,roots of opposite sign mean if one is positive then second should be negative, so the product of both is negative.
Complete step-by-step answer:
$2{x^2} - 4x + 2\sin \theta - 1 = 0$
We are solving this question by using general equation, that is $a{x^2} + bx + c = 0$ if we suppose it`s root is $\alpha ,\beta $ and it`s of opposite sign that`s mean $\alpha .\beta < 0$. In these type of question the value of $\alpha ,\beta $ low root get value of $\dfrac{c}{a} < 0$
comparing $2{x^2} - 4x + 2\sin \theta - 1 = 0$ with general $a{x^2} + bx + c = 0$
a = 2 b = -4 c = $2\sin \theta $
In this equation both roots are of opposite sing so we apply $\dfrac{c}{a} < 0$ (same equation) $\dfrac{{2\sin \theta - 1}}{2} < 0$
$2\sin \theta - 1 < 0$
$\operatorname{Sin} \theta < \dfrac{1}{2}$
$D > 0$ [ where D = ${b^2} - 4ac$ ]
Value of D will be ${4^2} - 2.(2\sin \theta - 1) > 0$
= $16 - 4.2.(2\sin \theta - 1) > 0$
= $16 - 8(2\sin \theta - 1) > 0$
Now open the brackets and multiply by 8
=\[16 - 16\sin \theta + 8 > 0\]
Add the numbers which are 16+8
=$24 - 16\sin \theta > 0$
compare the equation
= $24 > 16\sin \theta $
= $\operatorname{Sin} \theta < \dfrac{{24}}{{16}}$
This quantity is greater than 1. This is true for all values of $\theta $ because the value of $\sin \theta $ is less than 1.
$\operatorname{Sin} \theta $ should be less than $\dfrac{3}{2} = 1.5$
$\operatorname{Sin} \theta > 0.5$
$\theta $=$(0,\dfrac{\pi }{6}),(\dfrac{{5\pi }}{6},\pi )$
So, the correct answer is “Option B”.
Note: Root of opposite sign means if one is positive then second should be negative, so the product of both must be negative. We can solve this question by solving other options. For roots of a given quadratic to be the opposite sign, the product of roots is negative. Sign of roots of a quadratic equation.
*Both roots are positive (If a and b are opposite in sign and a and c are same in sign)
*Both roots are negative (If a,b,c are all of same sign)
*Roots are of opposite sign (If a and c are of opposite sign)
*roots equal but opposite in sing (If b=0)
Complete step-by-step answer:
$2{x^2} - 4x + 2\sin \theta - 1 = 0$
We are solving this question by using general equation, that is $a{x^2} + bx + c = 0$ if we suppose it`s root is $\alpha ,\beta $ and it`s of opposite sign that`s mean $\alpha .\beta < 0$. In these type of question the value of $\alpha ,\beta $ low root get value of $\dfrac{c}{a} < 0$
comparing $2{x^2} - 4x + 2\sin \theta - 1 = 0$ with general $a{x^2} + bx + c = 0$
a = 2 b = -4 c = $2\sin \theta $
In this equation both roots are of opposite sing so we apply $\dfrac{c}{a} < 0$ (same equation) $\dfrac{{2\sin \theta - 1}}{2} < 0$
$2\sin \theta - 1 < 0$
$\operatorname{Sin} \theta < \dfrac{1}{2}$
$D > 0$ [ where D = ${b^2} - 4ac$ ]
Value of D will be ${4^2} - 2.(2\sin \theta - 1) > 0$
= $16 - 4.2.(2\sin \theta - 1) > 0$
= $16 - 8(2\sin \theta - 1) > 0$
Now open the brackets and multiply by 8
=\[16 - 16\sin \theta + 8 > 0\]
Add the numbers which are 16+8
=$24 - 16\sin \theta > 0$
compare the equation
= $24 > 16\sin \theta $
= $\operatorname{Sin} \theta < \dfrac{{24}}{{16}}$
This quantity is greater than 1. This is true for all values of $\theta $ because the value of $\sin \theta $ is less than 1.
$\operatorname{Sin} \theta $ should be less than $\dfrac{3}{2} = 1.5$
$\operatorname{Sin} \theta > 0.5$
$\theta $=$(0,\dfrac{\pi }{6}),(\dfrac{{5\pi }}{6},\pi )$
So, the correct answer is “Option B”.
Note: Root of opposite sign means if one is positive then second should be negative, so the product of both must be negative. We can solve this question by solving other options. For roots of a given quadratic to be the opposite sign, the product of roots is negative. Sign of roots of a quadratic equation.
*Both roots are positive (If a and b are opposite in sign and a and c are same in sign)
*Both roots are negative (If a,b,c are all of same sign)
*Roots are of opposite sign (If a and c are of opposite sign)
*roots equal but opposite in sing (If b=0)
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE