Answer
Verified
497.1k+ views
Hint- Here, we will proceed by differentiating the given function once and then putting \[f'\left( x \right) = 0\] in order to obtain the values of x where local maxima and local minima can occur according to the sign of \[f''\left( x \right)\].
Complete step-by-step answer:
The given function in x is $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25{\text{ }} \to {\text{(1)}},x \in R$
It is also given that ${{\text{S}}_1}$ corresponds to the set of values of x where local minima occurs and ${{\text{S}}_2}$ corresponds to the set of values of x where local maxima occurs.
Let us differentiate the given function with respect to x, we get
\[
\Rightarrow \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = \dfrac{d}{{dx}}\left[ {9{x^4} + 12{x^3} - 36{x^2} + 25} \right] \\
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {9{x^4}} \right] + \dfrac{d}{{dx}}\left[ {12{x^3}} \right] - \dfrac{d}{{dx}}\left[ {36{x^2}} \right] + \dfrac{d}{{dx}}\left[ {25} \right] \\
\Rightarrow f'\left( x \right) = 9\dfrac{d}{{dx}}\left[ {{x^4}} \right] + 12\dfrac{d}{{dx}}\left[ {{x^3}} \right] - 36\dfrac{d}{{dx}}\left[ {{x^2}} \right] + 0 \\
\Rightarrow f'\left( x \right) = 9\left( {4{x^3}} \right) + 12\left( {3{x^2}} \right) - 36\left( {2x} \right) \\
\Rightarrow f'\left( x \right) = 36{x^3} + 36{x^2} - 72x \\
\Rightarrow f'\left( x \right) = 36x\left( {{x^2} + x - 2} \right){\text{ }} \to {\text{(2)}} \\
\]
Since, we know that local maxima or local minima are the points where local maximum and local minimum values will be occurring. At local maxima and local minima, for any function f(x) the necessary condition is \[f'\left( x \right) = 0\].
By putting \[f'\left( x \right) = 0\] in equation (2), we get
\[
\Rightarrow 0 = 36x\left( {{x^2} + x - 2} \right) \\
\Rightarrow x\left( {{x^2} + x - 2} \right) = 0 \\
\Rightarrow x\left( {{x^2} - x + 2x - 2} \right) = 0 \\
\Rightarrow x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0 \\
\Rightarrow x\left( {x - 1} \right)\left( {x + 2} \right) = 0 \\
\]
From the above equation, we have
x=0 or $
x - 1 = 0 \\
\Rightarrow x = 1 \\
$ or $
x + 2 = 0 \\
\Rightarrow x = - 2 \\
$
So, the points where maxima or minima can occur are x=0,1,-2
Also we know that for any function f(x) to attain local maxima at a point x=a, \[f''\left( a \right) < 0\] and for this function f(x) to attain local minima at a point x=b, \[f''\left( b \right) > 0\].
By differentiating the equation (2) both sides with respect to x, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f'\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {36x\left( {{x^2} + x - 2} \right)} \right] \\
\Rightarrow f''\left( x \right) = 36\dfrac{d}{{dx}}\left[ {{x^3} + {x^2} - 2x} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {\dfrac{d}{{dx}}\left[ {{x^3}} \right] + \dfrac{d}{{dx}}\left[ {{x^2}} \right] - 2\dfrac{{dx}}{{dx}}} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {3{x^2} + 2x - 2} \right]{\text{ }} \to {\text{(3)}} \\
\]
Put x=0 in equation (3), we get
\[ \Rightarrow f''\left( 0 \right) = 36\left[ {3{{\left( 0 \right)}^2} + 2\left( 0 \right) - 2} \right] = - 72\]
Clearly, \[f''\left( 0 \right) < 0\] so x=0 is a point of local maxima i.e., corresponding to point x=0, the given function f(x) has local maximum value. So, x=0 is a value in the set ${{\text{S}}_2}$.
Put x=1 in equation (3), we get
\[ \Rightarrow f''\left( 1 \right) = 36\left[ {3{{\left( 1 \right)}^2} + 2\left( 1 \right) - 2} \right] = 36\left[ 3 \right] = 108\]
Clearly, \[f''\left( 1 \right) > 0\] so x=1 is a point of local minima i.e., corresponding to point x=1, the given function f(x) has local minimum value. So, x=1 is a value in the set ${{\text{S}}_1}$.
Put x=-2 in equation (3), we get
\[ \Rightarrow f''\left( -2 \right) = 36\left[ {3{{\left( { - 2} \right)}^2} + 2\left( { - 2} \right) - 2} \right] = 36\left[ 6 \right] = 216\]
Clearly, \[f''\left( -2 \right) > 0\] so x=-2 is a point of local minima i.e., corresponding to point x=-2, the given function f(x) has local minimum value. So, x=-2 is a value in the set ${{\text{S}}_1}$.
So, set ${{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\}$
Hence, option A is correct.
Note- In this particular problem, we have used second derivative test i.e., if \[f''\left( a \right) < 0\], then x=a is a point of local maxima and if \[f''\left( a \right) > 0\], then x=a is a point of local minima. Also, if \[f''\left( a \right) = 0\]occurs then x=a is a point of inflection. Here, the local maximum value of function f(x) is obtained by substituting x=0 in the function and the local minimum values of f(x) is obtained by substituting x=-2 and x=1 in the function.
Complete step-by-step answer:
The given function in x is $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25{\text{ }} \to {\text{(1)}},x \in R$
It is also given that ${{\text{S}}_1}$ corresponds to the set of values of x where local minima occurs and ${{\text{S}}_2}$ corresponds to the set of values of x where local maxima occurs.
Let us differentiate the given function with respect to x, we get
\[
\Rightarrow \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = \dfrac{d}{{dx}}\left[ {9{x^4} + 12{x^3} - 36{x^2} + 25} \right] \\
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {9{x^4}} \right] + \dfrac{d}{{dx}}\left[ {12{x^3}} \right] - \dfrac{d}{{dx}}\left[ {36{x^2}} \right] + \dfrac{d}{{dx}}\left[ {25} \right] \\
\Rightarrow f'\left( x \right) = 9\dfrac{d}{{dx}}\left[ {{x^4}} \right] + 12\dfrac{d}{{dx}}\left[ {{x^3}} \right] - 36\dfrac{d}{{dx}}\left[ {{x^2}} \right] + 0 \\
\Rightarrow f'\left( x \right) = 9\left( {4{x^3}} \right) + 12\left( {3{x^2}} \right) - 36\left( {2x} \right) \\
\Rightarrow f'\left( x \right) = 36{x^3} + 36{x^2} - 72x \\
\Rightarrow f'\left( x \right) = 36x\left( {{x^2} + x - 2} \right){\text{ }} \to {\text{(2)}} \\
\]
Since, we know that local maxima or local minima are the points where local maximum and local minimum values will be occurring. At local maxima and local minima, for any function f(x) the necessary condition is \[f'\left( x \right) = 0\].
By putting \[f'\left( x \right) = 0\] in equation (2), we get
\[
\Rightarrow 0 = 36x\left( {{x^2} + x - 2} \right) \\
\Rightarrow x\left( {{x^2} + x - 2} \right) = 0 \\
\Rightarrow x\left( {{x^2} - x + 2x - 2} \right) = 0 \\
\Rightarrow x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0 \\
\Rightarrow x\left( {x - 1} \right)\left( {x + 2} \right) = 0 \\
\]
From the above equation, we have
x=0 or $
x - 1 = 0 \\
\Rightarrow x = 1 \\
$ or $
x + 2 = 0 \\
\Rightarrow x = - 2 \\
$
So, the points where maxima or minima can occur are x=0,1,-2
Also we know that for any function f(x) to attain local maxima at a point x=a, \[f''\left( a \right) < 0\] and for this function f(x) to attain local minima at a point x=b, \[f''\left( b \right) > 0\].
By differentiating the equation (2) both sides with respect to x, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f'\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {36x\left( {{x^2} + x - 2} \right)} \right] \\
\Rightarrow f''\left( x \right) = 36\dfrac{d}{{dx}}\left[ {{x^3} + {x^2} - 2x} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {\dfrac{d}{{dx}}\left[ {{x^3}} \right] + \dfrac{d}{{dx}}\left[ {{x^2}} \right] - 2\dfrac{{dx}}{{dx}}} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {3{x^2} + 2x - 2} \right]{\text{ }} \to {\text{(3)}} \\
\]
Put x=0 in equation (3), we get
\[ \Rightarrow f''\left( 0 \right) = 36\left[ {3{{\left( 0 \right)}^2} + 2\left( 0 \right) - 2} \right] = - 72\]
Clearly, \[f''\left( 0 \right) < 0\] so x=0 is a point of local maxima i.e., corresponding to point x=0, the given function f(x) has local maximum value. So, x=0 is a value in the set ${{\text{S}}_2}$.
Put x=1 in equation (3), we get
\[ \Rightarrow f''\left( 1 \right) = 36\left[ {3{{\left( 1 \right)}^2} + 2\left( 1 \right) - 2} \right] = 36\left[ 3 \right] = 108\]
Clearly, \[f''\left( 1 \right) > 0\] so x=1 is a point of local minima i.e., corresponding to point x=1, the given function f(x) has local minimum value. So, x=1 is a value in the set ${{\text{S}}_1}$.
Put x=-2 in equation (3), we get
\[ \Rightarrow f''\left( -2 \right) = 36\left[ {3{{\left( { - 2} \right)}^2} + 2\left( { - 2} \right) - 2} \right] = 36\left[ 6 \right] = 216\]
Clearly, \[f''\left( -2 \right) > 0\] so x=-2 is a point of local minima i.e., corresponding to point x=-2, the given function f(x) has local minimum value. So, x=-2 is a value in the set ${{\text{S}}_1}$.
So, set ${{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\}$
Hence, option A is correct.
Note- In this particular problem, we have used second derivative test i.e., if \[f''\left( a \right) < 0\], then x=a is a point of local maxima and if \[f''\left( a \right) > 0\], then x=a is a point of local minima. Also, if \[f''\left( a \right) = 0\]occurs then x=a is a point of inflection. Here, the local maximum value of function f(x) is obtained by substituting x=0 in the function and the local minimum values of f(x) is obtained by substituting x=-2 and x=1 in the function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE