
If ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$, then find the value of $\sec \left( { - \theta } \right)$:
A. \[ - 2\]
B. $ - \dfrac{1}{2}$
C. $1$
D. $ \pm 1$
Answer
624k+ views
Hint : Solve using trigonometric identities.
Given that: ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$
Converting the above equation in the terms of Sin and Cos, we get
$
\Rightarrow \dfrac{1}{{{{\cos }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1 = 2{\text{ }}\left( {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ and }}\sec \theta = \dfrac{1}{{\cos \theta }}} \right) \\
\Rightarrow \dfrac{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = 2 \\
\Rightarrow \dfrac{{1 + 1}}{{{{\cos }^2}\theta }} = 2{\text{ }}\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right) \\
\Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} = 2 \\
\Rightarrow {\cos ^2}\theta = 1 \\
\Rightarrow \cos \theta = \pm 1{\text{ }} \ldots \, \ldots \left( 1 \right) \\
$
We know that, $\cos \left( { - \theta } \right) = \cos \left( \theta \right)$
$\therefore \sec \left( { - \theta } \right) = \sec \left( \theta \right) = \dfrac{1}{{\cos \theta }}$
Put the value of $\cos \theta $ from equation $\left( 1 \right)$, we get
$\sec \left( { - \theta } \right) = \pm 1$
Note: In these types of problems, where there is no direct formula for the given trigonometric terms, one should always try to convert them to some trigonometric terms which have some relation using trigonometric relations and identities so as to make the problem easier to calculate.
Given that: ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$
Converting the above equation in the terms of Sin and Cos, we get
$
\Rightarrow \dfrac{1}{{{{\cos }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1 = 2{\text{ }}\left( {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ and }}\sec \theta = \dfrac{1}{{\cos \theta }}} \right) \\
\Rightarrow \dfrac{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = 2 \\
\Rightarrow \dfrac{{1 + 1}}{{{{\cos }^2}\theta }} = 2{\text{ }}\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right) \\
\Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} = 2 \\
\Rightarrow {\cos ^2}\theta = 1 \\
\Rightarrow \cos \theta = \pm 1{\text{ }} \ldots \, \ldots \left( 1 \right) \\
$
We know that, $\cos \left( { - \theta } \right) = \cos \left( \theta \right)$
$\therefore \sec \left( { - \theta } \right) = \sec \left( \theta \right) = \dfrac{1}{{\cos \theta }}$
Put the value of $\cos \theta $ from equation $\left( 1 \right)$, we get
$\sec \left( { - \theta } \right) = \pm 1$
Note: In these types of problems, where there is no direct formula for the given trigonometric terms, one should always try to convert them to some trigonometric terms which have some relation using trigonometric relations and identities so as to make the problem easier to calculate.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

