If $\sec a + \tan a = p$, then show that $\sec a - \tan a = \dfrac{1}{p}$ . Hence find the value of $\cos a$ and $\sin a$.
Answer
Verified
512.4k+ views
Hint- For solving this problem use the basic identities of trigonometry such as ${\sec ^2}\theta - {\tan ^2}\theta = 1$ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE