Answer
Verified
490.8k+ views
Hint- For solving this problem use the basic identities of trigonometry such as ${\sec ^2}\theta - {\tan ^2}\theta = 1$ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE