If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2},$then write the value of $x + y + z.$
Answer
Verified
511.5k+ views
Hint: We need to know the range and basic values of inverse sine function to solve this problem.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Recently Updated Pages
Questions & Answers - Ask your doubts
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Science: Engaging Questions & Answers for Success
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE