Answer
Verified
499.5k+ views
Hint: We need to know the range and basic values of inverse sine function to solve this problem.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE