
If $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} $ . Find $ a $
Answer
507k+ views
Hint: To find $a$, first we should solve the left-hand side and then equating the value obtained on the left-hand side, we will be able to find the value of $a$. To simplify the left-hand side, we will be using a cofunction identity: $\sin x = \cos (90 - x)$ and a double angle formula: $\sin 2x = 2\sin x\cos x$.
Complete step by step solution:
The given question is $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} $ . We have to find the value of $ a $ .
First, let us only consider Left-hand side,
That is, $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } $
To this let us multiply and divide by $ 2\cos {6^\circ } $
$ \Rightarrow \dfrac{{2\cos {6^\circ }\sin {6^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
We will be clubbing the first 3 terms and rearranging them in the numerator,
$ \Rightarrow \dfrac{{(2\sin {6^\circ }\cos {6^ \circ })\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
This was done so that we could apply double angle formula, that is $ \sin 2x = 2\sin x\cos x $
So, the above equation becomes,
$ \Rightarrow \dfrac{{(\sin 2({6^ \circ }))\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
From cofunction identity, we know that, $ \sin x = \cos (90 - x) $
So, $ \sin {78^\circ } $ can be written as:
\[
\sin {78^\circ } = \cos {(90 - 78)^\circ } \\
\Rightarrow \sin {78^\circ } = \cos {12^\circ } \;
\]
Substituting this in $ \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $ , we get:
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\cos {{12}^\circ }}}{{2\cos {6^\circ }}} $
Again, rearranging the terms, we get
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2\cos {6^\circ }}} $
Let us again multiply and divide by $ 2 $ ,
$ \Rightarrow \dfrac{{2\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2 \times 2\cos {6^\circ }}} $
We shall again make use of double angle formula $ \sin 2x = 2\sin x\cos x $
$
\Rightarrow \dfrac{{\sin 2 \times{{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \;
$
Following the same procedure as earlier, we may write $ \sin 66^\circ $ as
$
\sin 66^\circ = \cos (90 - 66) \\
\Rightarrow \sin 66^\circ = \cos {24^\circ } \;
$
Using this, $ \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} $ becomes:
$ \Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\cos {{24}^\circ }}}{{4\cos {6^\circ }}} $
Again, multiplying and dividing by $ 2 $ and rearranging the terms, we write:
\[ \Rightarrow \dfrac{{2\sin {{24}^ \circ }\cos {{24}^\circ }\sin {{42}^\circ }}}{{2 \times 4\cos {6^\circ }}}\]
We will use double angle formula $ \sin 2x = 2\sin x\cos x $
\[
\Rightarrow \dfrac{{\sin 2 \times{{24}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{48}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \;
\]
$ \sin {48^\circ } $ can again be written as:
$
\sin {48^\circ } = \cos {(90 - 48)^\circ } \\
\Rightarrow \sin {48^\circ } = \cos {42^\circ } \;
$
On substituting this, we get
\[\dfrac{{\cos {{42}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}}\]
Multiplying and dividing by $ 2 $ ,
\[\dfrac{{2\sin {{42}^\circ }\cos {{42}^ \circ }}}{{2 \times 8\cos {6^\circ }}}\]
using double angle formula $ \sin 2x = 2\sin x\cos x $ , we get:
\[
\dfrac{{\sin 2 \times{{42}^\circ }}}{{16\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{84}^\circ }}}{{16\cos {6^\circ }}} \;
\]
$ \sin {84^\circ } $ can be written as
$
\sin {84^\circ } = \cos {(90 - 84)^\circ } \\
\Rightarrow \sin {84^\circ } = \cos {6^\circ } \;
$
Substitute this in the previous step,
\[ \Rightarrow \dfrac{{\cos {6^\circ }}}{{16\cos {6^\circ }}}\]
Since, \[\cos {6^\circ }\] is a common term in both numerator and denominator, they get cancelled off.
Thus, in the left-hand side we have, $ \dfrac{1}{{16}} $
Equating left-hand side and right-hand side, we get:
$ \dfrac{1}{{16}} = \dfrac{1}{{2a}} $
Taking reciprocal of both the sides and rearranging them, we get
$ 2a = 16 $
Dividing both the sides by $ 2 $ ,
$
\Rightarrow \dfrac{{2a}}{2} = \dfrac{{16}}{2} \\
\Rightarrow a = 8 \;
$
Thus, the value of $ a $ is $ 8 $ .
So, the correct answer is “a=8”.
Note: Solving the above given problem using the transformation formula $ \sin A\sin B = \dfrac{1}{2}\left[ {\cos (A - B) - \cos (A + B)} \right] $ will make the solution more complicated. Hence, it is recommended to follow the above method to solve these types of problems.
Complete step by step solution:
The given question is $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} $ . We have to find the value of $ a $ .
First, let us only consider Left-hand side,
That is, $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } $
To this let us multiply and divide by $ 2\cos {6^\circ } $
$ \Rightarrow \dfrac{{2\cos {6^\circ }\sin {6^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
We will be clubbing the first 3 terms and rearranging them in the numerator,
$ \Rightarrow \dfrac{{(2\sin {6^\circ }\cos {6^ \circ })\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
This was done so that we could apply double angle formula, that is $ \sin 2x = 2\sin x\cos x $
So, the above equation becomes,
$ \Rightarrow \dfrac{{(\sin 2({6^ \circ }))\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
From cofunction identity, we know that, $ \sin x = \cos (90 - x) $
So, $ \sin {78^\circ } $ can be written as:
\[
\sin {78^\circ } = \cos {(90 - 78)^\circ } \\
\Rightarrow \sin {78^\circ } = \cos {12^\circ } \;
\]
Substituting this in $ \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $ , we get:
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\cos {{12}^\circ }}}{{2\cos {6^\circ }}} $
Again, rearranging the terms, we get
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2\cos {6^\circ }}} $
Let us again multiply and divide by $ 2 $ ,
$ \Rightarrow \dfrac{{2\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2 \times 2\cos {6^\circ }}} $
We shall again make use of double angle formula $ \sin 2x = 2\sin x\cos x $
$
\Rightarrow \dfrac{{\sin 2 \times{{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \;
$
Following the same procedure as earlier, we may write $ \sin 66^\circ $ as
$
\sin 66^\circ = \cos (90 - 66) \\
\Rightarrow \sin 66^\circ = \cos {24^\circ } \;
$
Using this, $ \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} $ becomes:
$ \Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\cos {{24}^\circ }}}{{4\cos {6^\circ }}} $
Again, multiplying and dividing by $ 2 $ and rearranging the terms, we write:
\[ \Rightarrow \dfrac{{2\sin {{24}^ \circ }\cos {{24}^\circ }\sin {{42}^\circ }}}{{2 \times 4\cos {6^\circ }}}\]
We will use double angle formula $ \sin 2x = 2\sin x\cos x $
\[
\Rightarrow \dfrac{{\sin 2 \times{{24}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{48}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \;
\]
$ \sin {48^\circ } $ can again be written as:
$
\sin {48^\circ } = \cos {(90 - 48)^\circ } \\
\Rightarrow \sin {48^\circ } = \cos {42^\circ } \;
$
On substituting this, we get
\[\dfrac{{\cos {{42}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}}\]
Multiplying and dividing by $ 2 $ ,
\[\dfrac{{2\sin {{42}^\circ }\cos {{42}^ \circ }}}{{2 \times 8\cos {6^\circ }}}\]
using double angle formula $ \sin 2x = 2\sin x\cos x $ , we get:
\[
\dfrac{{\sin 2 \times{{42}^\circ }}}{{16\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{84}^\circ }}}{{16\cos {6^\circ }}} \;
\]
$ \sin {84^\circ } $ can be written as
$
\sin {84^\circ } = \cos {(90 - 84)^\circ } \\
\Rightarrow \sin {84^\circ } = \cos {6^\circ } \;
$
Substitute this in the previous step,
\[ \Rightarrow \dfrac{{\cos {6^\circ }}}{{16\cos {6^\circ }}}\]
Since, \[\cos {6^\circ }\] is a common term in both numerator and denominator, they get cancelled off.
Thus, in the left-hand side we have, $ \dfrac{1}{{16}} $
Equating left-hand side and right-hand side, we get:
$ \dfrac{1}{{16}} = \dfrac{1}{{2a}} $
Taking reciprocal of both the sides and rearranging them, we get
$ 2a = 16 $
Dividing both the sides by $ 2 $ ,
$
\Rightarrow \dfrac{{2a}}{2} = \dfrac{{16}}{2} \\
\Rightarrow a = 8 \;
$
Thus, the value of $ a $ is $ 8 $ .
So, the correct answer is “a=8”.
Note: Solving the above given problem using the transformation formula $ \sin A\sin B = \dfrac{1}{2}\left[ {\cos (A - B) - \cos (A + B)} \right] $ will make the solution more complicated. Hence, it is recommended to follow the above method to solve these types of problems.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

