
If $\sin A + {\left( {\sin A} \right)^2} = 1$, then the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] is
$
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. }}\dfrac{1}{2} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 3}} \\
$
Answer
621k+ views
Hint: Here, we will be using the formula ${\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1$ in order to determine the values of \[{\left( {\cos A} \right)^2}\] and \[{\left( {\cos A} \right)^4}\] from the given equation which is $\sin A + {\left( {\sin A} \right)^2} = 1$ and then ultimately the expression whose value is required will appear as the LHS of the given equation.
Complete step-by-step answer:
Given, $
\sin A + {\left( {\sin A} \right)^2} = 1{\text{ }} \to {\text{(1)}} \\
\Rightarrow \sin A = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(2)}} \\
$
As we know that
$
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2}{\text{ }} \to {\text{(3)}} \\
$
Replacing the angle $\theta $ with angle $A$ in equation (3), we get
$ \Rightarrow {\left( {\cos A} \right)^2} = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(4)}}$
Clearly, the RHS of both the equations (2) and (4) are the same so the LHS of both the equations will also be equal.
\[ \Rightarrow \sin A = {\left( {\cos A} \right)^2}{\text{ }} \to {\text{(5)}}\]
So, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] can be determined by little modification as under.
\[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^2} \times {{\left( {\cos A} \right)}^2}} \right]\]
Using equation (5), we get
\[
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + \left( {\sin A} \right) \times \left( {\sin A} \right)} \right] \\
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + {{\left( {\sin A} \right)}^2}} \right] \\
\]
Finally using the given equation (1), we get
\[ \Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = 1\]
Therefore, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] is 1.
Hence, option A is correct.
Note: In this particular problem, we obtained the value of \[{\left( {\cos A} \right)^2}\] in terms of \[\sin A\]using the given equation and some trigonometric formula. From there we represented the expression whose value is required in terms of \[{\left( {\cos A} \right)^2}\] which is ultimately converted in terms of \[\sin A\].
Complete step-by-step answer:
Given, $
\sin A + {\left( {\sin A} \right)^2} = 1{\text{ }} \to {\text{(1)}} \\
\Rightarrow \sin A = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(2)}} \\
$
As we know that
$
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2}{\text{ }} \to {\text{(3)}} \\
$
Replacing the angle $\theta $ with angle $A$ in equation (3), we get
$ \Rightarrow {\left( {\cos A} \right)^2} = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(4)}}$
Clearly, the RHS of both the equations (2) and (4) are the same so the LHS of both the equations will also be equal.
\[ \Rightarrow \sin A = {\left( {\cos A} \right)^2}{\text{ }} \to {\text{(5)}}\]
So, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] can be determined by little modification as under.
\[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^2} \times {{\left( {\cos A} \right)}^2}} \right]\]
Using equation (5), we get
\[
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + \left( {\sin A} \right) \times \left( {\sin A} \right)} \right] \\
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + {{\left( {\sin A} \right)}^2}} \right] \\
\]
Finally using the given equation (1), we get
\[ \Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = 1\]
Therefore, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] is 1.
Hence, option A is correct.
Note: In this particular problem, we obtained the value of \[{\left( {\cos A} \right)^2}\] in terms of \[\sin A\]using the given equation and some trigonometric formula. From there we represented the expression whose value is required in terms of \[{\left( {\cos A} \right)^2}\] which is ultimately converted in terms of \[\sin A\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

