If $\sin A + {\left( {\sin A} \right)^2} = 1$, then the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] is
$
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. }}\dfrac{1}{2} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 3}} \\
$
Answer
Verified
504.6k+ views
Hint: Here, we will be using the formula ${\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1$ in order to determine the values of \[{\left( {\cos A} \right)^2}\] and \[{\left( {\cos A} \right)^4}\] from the given equation which is $\sin A + {\left( {\sin A} \right)^2} = 1$ and then ultimately the expression whose value is required will appear as the LHS of the given equation.
Complete step-by-step answer:
Given, $
\sin A + {\left( {\sin A} \right)^2} = 1{\text{ }} \to {\text{(1)}} \\
\Rightarrow \sin A = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(2)}} \\
$
As we know that
$
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2}{\text{ }} \to {\text{(3)}} \\
$
Replacing the angle $\theta $ with angle $A$ in equation (3), we get
$ \Rightarrow {\left( {\cos A} \right)^2} = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(4)}}$
Clearly, the RHS of both the equations (2) and (4) are the same so the LHS of both the equations will also be equal.
\[ \Rightarrow \sin A = {\left( {\cos A} \right)^2}{\text{ }} \to {\text{(5)}}\]
So, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] can be determined by little modification as under.
\[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^2} \times {{\left( {\cos A} \right)}^2}} \right]\]
Using equation (5), we get
\[
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + \left( {\sin A} \right) \times \left( {\sin A} \right)} \right] \\
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + {{\left( {\sin A} \right)}^2}} \right] \\
\]
Finally using the given equation (1), we get
\[ \Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = 1\]
Therefore, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] is 1.
Hence, option A is correct.
Note: In this particular problem, we obtained the value of \[{\left( {\cos A} \right)^2}\] in terms of \[\sin A\]using the given equation and some trigonometric formula. From there we represented the expression whose value is required in terms of \[{\left( {\cos A} \right)^2}\] which is ultimately converted in terms of \[\sin A\].
Complete step-by-step answer:
Given, $
\sin A + {\left( {\sin A} \right)^2} = 1{\text{ }} \to {\text{(1)}} \\
\Rightarrow \sin A = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(2)}} \\
$
As we know that
$
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2}{\text{ }} \to {\text{(3)}} \\
$
Replacing the angle $\theta $ with angle $A$ in equation (3), we get
$ \Rightarrow {\left( {\cos A} \right)^2} = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(4)}}$
Clearly, the RHS of both the equations (2) and (4) are the same so the LHS of both the equations will also be equal.
\[ \Rightarrow \sin A = {\left( {\cos A} \right)^2}{\text{ }} \to {\text{(5)}}\]
So, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] can be determined by little modification as under.
\[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^2} \times {{\left( {\cos A} \right)}^2}} \right]\]
Using equation (5), we get
\[
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + \left( {\sin A} \right) \times \left( {\sin A} \right)} \right] \\
\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + {{\left( {\sin A} \right)}^2}} \right] \\
\]
Finally using the given equation (1), we get
\[ \Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = 1\]
Therefore, the value of the expression \[\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right]\] is 1.
Hence, option A is correct.
Note: In this particular problem, we obtained the value of \[{\left( {\cos A} \right)^2}\] in terms of \[\sin A\]using the given equation and some trigonometric formula. From there we represented the expression whose value is required in terms of \[{\left( {\cos A} \right)^2}\] which is ultimately converted in terms of \[\sin A\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE