If \[\sin \theta +{{\sin }^{2}}\theta =1\], find the value of
\[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
Answer
Verified
507k+ views
Hint: First of all, use the formula \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] in the given equation to get \[\sin \theta ={{\cos }^{2}}\theta \]. Now use \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] in the given expression to express it in terms of \[\left( \sin \theta +{{\sin }^{2}}\theta \right)\] whose value is 1.
Complete step-by-step answer:
Here, we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\] and we have to find the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
First of all let us take the given equation, that is, \[\sin \theta +{{\sin }^{2}}\theta =1\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Or, \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
By putting the value of \[{{\sin }^{2}}\theta \] in the given equation, we get,
\[\sin \theta +1-{{\cos }^{2}}\theta =1\]
By cancelling 1 from both sides, we get,
\[\sin \theta -{{\cos }^{2}}\theta =0\]
Or, \[\sin \theta ={{\cos }^{2}}\theta ....\left( i \right)\]
Now, let us consider the expression whose value is to be found as,
\[A={{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
We can also write the above expression as,
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{6}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now by writing, \[{{\cos }^{6}}\theta ={{\cos }^{2}}\theta .{{\cos }^{4}}\theta \], we get
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{2}}\theta .{{\cos }^{4}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now, we know that \[{{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}={{\left( a+b \right)}^{3}}\]
By taking \[a={{\cos }^{4}}\theta \] and \[b={{\cos }^{2}}\theta \] in the above expression, we get,
\[A={{\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta -1 \right)\]
By writing \[{{\cos }^{4}}\theta ={{\left( {{\cos }^{2}}\theta \right)}^{2}}\] in the above expression, we get,
\[A={{\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+\left( {{\cos }^{2}}\theta \right) \right]}^{3}}+2\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+{{\cos }^{2}}\theta -1 \right]\]
From equation (i), we know that \[{{\cos }^{2}}\theta =\sin \theta \]. By applying it in the above expression, we get
\[A={{\left[ {{\left( \sin \theta \right)}^{2}}+\sin \theta \right]}^{3}}+2\left( {{\left( \sin \theta \right)}^{2}}+\sin \theta -1 \right)\]
As we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\], therefore by applying it in the above equation, we get,
\[\begin{align}
& A={{\left[ 1 \right]}^{3}}+2\left[ 1-1 \right] \\
& A=1+2\left( 0 \right) \\
& A=1 \\
\end{align}\]
Therefore, we get the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2=1\].
Note: Take special care of powers of each term while writing them and always cross-check after writing each equation. Whenever you get the higher powers, always try using the formulas like \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]or \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] according to the question. Here, while solving the given equation, some students finally write it as \[\sin \theta =\cos \theta \] or \[{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \] instead of \[\sin \theta ={{\cos }^{2}}\theta \]. So this mistake must be avoided.
Complete step-by-step answer:
Here, we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\] and we have to find the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
First of all let us take the given equation, that is, \[\sin \theta +{{\sin }^{2}}\theta =1\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Or, \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
By putting the value of \[{{\sin }^{2}}\theta \] in the given equation, we get,
\[\sin \theta +1-{{\cos }^{2}}\theta =1\]
By cancelling 1 from both sides, we get,
\[\sin \theta -{{\cos }^{2}}\theta =0\]
Or, \[\sin \theta ={{\cos }^{2}}\theta ....\left( i \right)\]
Now, let us consider the expression whose value is to be found as,
\[A={{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
We can also write the above expression as,
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{6}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now by writing, \[{{\cos }^{6}}\theta ={{\cos }^{2}}\theta .{{\cos }^{4}}\theta \], we get
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{2}}\theta .{{\cos }^{4}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now, we know that \[{{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}={{\left( a+b \right)}^{3}}\]
By taking \[a={{\cos }^{4}}\theta \] and \[b={{\cos }^{2}}\theta \] in the above expression, we get,
\[A={{\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta -1 \right)\]
By writing \[{{\cos }^{4}}\theta ={{\left( {{\cos }^{2}}\theta \right)}^{2}}\] in the above expression, we get,
\[A={{\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+\left( {{\cos }^{2}}\theta \right) \right]}^{3}}+2\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+{{\cos }^{2}}\theta -1 \right]\]
From equation (i), we know that \[{{\cos }^{2}}\theta =\sin \theta \]. By applying it in the above expression, we get
\[A={{\left[ {{\left( \sin \theta \right)}^{2}}+\sin \theta \right]}^{3}}+2\left( {{\left( \sin \theta \right)}^{2}}+\sin \theta -1 \right)\]
As we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\], therefore by applying it in the above equation, we get,
\[\begin{align}
& A={{\left[ 1 \right]}^{3}}+2\left[ 1-1 \right] \\
& A=1+2\left( 0 \right) \\
& A=1 \\
\end{align}\]
Therefore, we get the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2=1\].
Note: Take special care of powers of each term while writing them and always cross-check after writing each equation. Whenever you get the higher powers, always try using the formulas like \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]or \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] according to the question. Here, while solving the given equation, some students finally write it as \[\sin \theta =\cos \theta \] or \[{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \] instead of \[\sin \theta ={{\cos }^{2}}\theta \]. So this mistake must be avoided.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE