
If \[\sin \theta +{{\sin }^{2}}\theta =1\], find the value of
\[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
Answer
516.3k+ views
Hint: First of all, use the formula \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] in the given equation to get \[\sin \theta ={{\cos }^{2}}\theta \]. Now use \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] in the given expression to express it in terms of \[\left( \sin \theta +{{\sin }^{2}}\theta \right)\] whose value is 1.
Complete step-by-step answer:
Here, we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\] and we have to find the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
First of all let us take the given equation, that is, \[\sin \theta +{{\sin }^{2}}\theta =1\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Or, \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
By putting the value of \[{{\sin }^{2}}\theta \] in the given equation, we get,
\[\sin \theta +1-{{\cos }^{2}}\theta =1\]
By cancelling 1 from both sides, we get,
\[\sin \theta -{{\cos }^{2}}\theta =0\]
Or, \[\sin \theta ={{\cos }^{2}}\theta ....\left( i \right)\]
Now, let us consider the expression whose value is to be found as,
\[A={{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
We can also write the above expression as,
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{6}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now by writing, \[{{\cos }^{6}}\theta ={{\cos }^{2}}\theta .{{\cos }^{4}}\theta \], we get
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{2}}\theta .{{\cos }^{4}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now, we know that \[{{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}={{\left( a+b \right)}^{3}}\]
By taking \[a={{\cos }^{4}}\theta \] and \[b={{\cos }^{2}}\theta \] in the above expression, we get,
\[A={{\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta -1 \right)\]
By writing \[{{\cos }^{4}}\theta ={{\left( {{\cos }^{2}}\theta \right)}^{2}}\] in the above expression, we get,
\[A={{\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+\left( {{\cos }^{2}}\theta \right) \right]}^{3}}+2\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+{{\cos }^{2}}\theta -1 \right]\]
From equation (i), we know that \[{{\cos }^{2}}\theta =\sin \theta \]. By applying it in the above expression, we get
\[A={{\left[ {{\left( \sin \theta \right)}^{2}}+\sin \theta \right]}^{3}}+2\left( {{\left( \sin \theta \right)}^{2}}+\sin \theta -1 \right)\]
As we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\], therefore by applying it in the above equation, we get,
\[\begin{align}
& A={{\left[ 1 \right]}^{3}}+2\left[ 1-1 \right] \\
& A=1+2\left( 0 \right) \\
& A=1 \\
\end{align}\]
Therefore, we get the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2=1\].
Note: Take special care of powers of each term while writing them and always cross-check after writing each equation. Whenever you get the higher powers, always try using the formulas like \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]or \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] according to the question. Here, while solving the given equation, some students finally write it as \[\sin \theta =\cos \theta \] or \[{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \] instead of \[\sin \theta ={{\cos }^{2}}\theta \]. So this mistake must be avoided.
Complete step-by-step answer:
Here, we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\] and we have to find the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
First of all let us take the given equation, that is, \[\sin \theta +{{\sin }^{2}}\theta =1\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Or, \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
By putting the value of \[{{\sin }^{2}}\theta \] in the given equation, we get,
\[\sin \theta +1-{{\cos }^{2}}\theta =1\]
By cancelling 1 from both sides, we get,
\[\sin \theta -{{\cos }^{2}}\theta =0\]
Or, \[\sin \theta ={{\cos }^{2}}\theta ....\left( i \right)\]
Now, let us consider the expression whose value is to be found as,
\[A={{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2\]
We can also write the above expression as,
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{6}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now by writing, \[{{\cos }^{6}}\theta ={{\cos }^{2}}\theta .{{\cos }^{4}}\theta \], we get
\[A={{\left( {{\cos }^{4}}\theta \right)}^{3}}+3{{\cos }^{2}}\theta .{{\cos }^{4}}\theta \left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)+{{\left( {{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta -{{\cos }^{2}}\theta -1 \right)\]
Now, we know that \[{{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}={{\left( a+b \right)}^{3}}\]
By taking \[a={{\cos }^{4}}\theta \] and \[b={{\cos }^{2}}\theta \] in the above expression, we get,
\[A={{\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta \right)}^{3}}+2\left( {{\cos }^{4}}\theta +{{\cos }^{2}}\theta -1 \right)\]
By writing \[{{\cos }^{4}}\theta ={{\left( {{\cos }^{2}}\theta \right)}^{2}}\] in the above expression, we get,
\[A={{\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+\left( {{\cos }^{2}}\theta \right) \right]}^{3}}+2\left[ {{\left( {{\cos }^{2}}\theta \right)}^{2}}+{{\cos }^{2}}\theta -1 \right]\]
From equation (i), we know that \[{{\cos }^{2}}\theta =\sin \theta \]. By applying it in the above expression, we get
\[A={{\left[ {{\left( \sin \theta \right)}^{2}}+\sin \theta \right]}^{3}}+2\left( {{\left( \sin \theta \right)}^{2}}+\sin \theta -1 \right)\]
As we are given that \[\sin \theta +{{\sin }^{2}}\theta =1\], therefore by applying it in the above equation, we get,
\[\begin{align}
& A={{\left[ 1 \right]}^{3}}+2\left[ 1-1 \right] \\
& A=1+2\left( 0 \right) \\
& A=1 \\
\end{align}\]
Therefore, we get the value of \[{{\cos }^{12}}\theta +3{{\cos }^{10}}\theta +3{{\cos }^{8}}\theta +{{\cos }^{6}}\theta +2{{\cos }^{4}}\theta +2{{\cos }^{2}}\theta -2=1\].
Note: Take special care of powers of each term while writing them and always cross-check after writing each equation. Whenever you get the higher powers, always try using the formulas like \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]or \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] according to the question. Here, while solving the given equation, some students finally write it as \[\sin \theta =\cos \theta \] or \[{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \] instead of \[\sin \theta ={{\cos }^{2}}\theta \]. So this mistake must be avoided.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Which of the following is not a feature of the election class 11 social science CBSE

The mass of oxalic acid crystals H2C2O42H2O required class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

How do the teeth of a lion help it to be greatly adapted class 11 biology CBSE
