$
{\text{If sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in G}}{\text{.P}}{\text{. then co}}{{\text{t}}^6}\theta - {\cot ^2}\theta {\text{ is}} \\
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. }}\dfrac{1}{2} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 3}} \\
$
Answer
Verified
513.3k+ views
$
\\
{\text{We know that when }}a,{\text{ }}b,{\text{ }}c{\text{ are in GP then }} \\
\Rightarrow {b^2} = a \cdot c \\
{\text{here sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in gp}} \\
\Rightarrow {\text{co}}{{\text{s}}^2}\theta = \sin \theta \cdot \tan \theta \\
{\text{ = sin}}\theta \cdot \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }} = \dfrac{1}{{\cos \theta }}{\text{ }} \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} = 1{\text{ }}........{\text{(i)}} \\
\Rightarrow {\cot ^2}\theta = \sec \theta \\
{\text{Now put the value of }}{\cot ^2}\theta {\text{ in the question}} \\
\Rightarrow {\cot ^6}\theta - {\cot ^2}\theta = {\sec ^3}\theta - \sec \theta \\
{\text{ = }}\sec \theta ({\sec ^2}\theta - 1) \\
{\text{ = }}\sec \theta \cdot {\tan ^2}\theta \\
{\text{ = }}\dfrac{1}{{\cos \theta }} \cdot \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \\
{\text{ = }}\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} \\
{\text{By putting the value in equation (i)}} \\
{\cot ^6}\theta - {\cot ^2}\theta = 1{\text{ }} \\
{\text{So option A is correct}}{\text{.}} \\
{\text{Note: - Always try to use geometric mean when three consecutive term of a GP are given}}{\text{. }} \\
{\text{these are the best method to solve the questions}}{\text{.}} \\
$
\\
{\text{We know that when }}a,{\text{ }}b,{\text{ }}c{\text{ are in GP then }} \\
\Rightarrow {b^2} = a \cdot c \\
{\text{here sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in gp}} \\
\Rightarrow {\text{co}}{{\text{s}}^2}\theta = \sin \theta \cdot \tan \theta \\
{\text{ = sin}}\theta \cdot \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }} = \dfrac{1}{{\cos \theta }}{\text{ }} \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} = 1{\text{ }}........{\text{(i)}} \\
\Rightarrow {\cot ^2}\theta = \sec \theta \\
{\text{Now put the value of }}{\cot ^2}\theta {\text{ in the question}} \\
\Rightarrow {\cot ^6}\theta - {\cot ^2}\theta = {\sec ^3}\theta - \sec \theta \\
{\text{ = }}\sec \theta ({\sec ^2}\theta - 1) \\
{\text{ = }}\sec \theta \cdot {\tan ^2}\theta \\
{\text{ = }}\dfrac{1}{{\cos \theta }} \cdot \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \\
{\text{ = }}\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} \\
{\text{By putting the value in equation (i)}} \\
{\cot ^6}\theta - {\cot ^2}\theta = 1{\text{ }} \\
{\text{So option A is correct}}{\text{.}} \\
{\text{Note: - Always try to use geometric mean when three consecutive term of a GP are given}}{\text{. }} \\
{\text{these are the best method to solve the questions}}{\text{.}} \\
$
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE