Answer
Verified
504.3k+ views
$
\\
{\text{We know that when }}a,{\text{ }}b,{\text{ }}c{\text{ are in GP then }} \\
\Rightarrow {b^2} = a \cdot c \\
{\text{here sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in gp}} \\
\Rightarrow {\text{co}}{{\text{s}}^2}\theta = \sin \theta \cdot \tan \theta \\
{\text{ = sin}}\theta \cdot \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }} = \dfrac{1}{{\cos \theta }}{\text{ }} \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} = 1{\text{ }}........{\text{(i)}} \\
\Rightarrow {\cot ^2}\theta = \sec \theta \\
{\text{Now put the value of }}{\cot ^2}\theta {\text{ in the question}} \\
\Rightarrow {\cot ^6}\theta - {\cot ^2}\theta = {\sec ^3}\theta - \sec \theta \\
{\text{ = }}\sec \theta ({\sec ^2}\theta - 1) \\
{\text{ = }}\sec \theta \cdot {\tan ^2}\theta \\
{\text{ = }}\dfrac{1}{{\cos \theta }} \cdot \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \\
{\text{ = }}\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} \\
{\text{By putting the value in equation (i)}} \\
{\cot ^6}\theta - {\cot ^2}\theta = 1{\text{ }} \\
{\text{So option A is correct}}{\text{.}} \\
{\text{Note: - Always try to use geometric mean when three consecutive term of a GP are given}}{\text{. }} \\
{\text{these are the best method to solve the questions}}{\text{.}} \\
$
\\
{\text{We know that when }}a,{\text{ }}b,{\text{ }}c{\text{ are in GP then }} \\
\Rightarrow {b^2} = a \cdot c \\
{\text{here sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in gp}} \\
\Rightarrow {\text{co}}{{\text{s}}^2}\theta = \sin \theta \cdot \tan \theta \\
{\text{ = sin}}\theta \cdot \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }} = \dfrac{1}{{\cos \theta }}{\text{ }} \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} = 1{\text{ }}........{\text{(i)}} \\
\Rightarrow {\cot ^2}\theta = \sec \theta \\
{\text{Now put the value of }}{\cot ^2}\theta {\text{ in the question}} \\
\Rightarrow {\cot ^6}\theta - {\cot ^2}\theta = {\sec ^3}\theta - \sec \theta \\
{\text{ = }}\sec \theta ({\sec ^2}\theta - 1) \\
{\text{ = }}\sec \theta \cdot {\tan ^2}\theta \\
{\text{ = }}\dfrac{1}{{\cos \theta }} \cdot \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \\
{\text{ = }}\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} \\
{\text{By putting the value in equation (i)}} \\
{\cot ^6}\theta - {\cot ^2}\theta = 1{\text{ }} \\
{\text{So option A is correct}}{\text{.}} \\
{\text{Note: - Always try to use geometric mean when three consecutive term of a GP are given}}{\text{. }} \\
{\text{these are the best method to solve the questions}}{\text{.}} \\
$
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE