
If ${\tan ^2}\theta = 2{\tan ^2}\phi + 1$ . Then find the value of $\cos 2\theta + {\sin ^2}\phi .$
A) -1
B) 0
C) 1
D) None of these
Answer
593.4k+ views
Hint:To solve the problem we have to find the value of $\cos 2\theta $ in terms of $\phi $ . Then we have to calculate the value of $\cos 2\theta + {\sin ^2}\phi .$
Complete step-by-step answer:
From the given equation we have ${\tan ^2}\theta = 2{\tan ^2}\phi + 1$.
We know that $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$ .
Let us substitute the value of ${\tan ^2}\theta $ in the above formula, we get,
$\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{{1 - (2{{\tan }^2}\phi + 1)}}{{1 + (2{{\tan }^2}\phi + 1)}}.$
Now we can simplify the above equation to get the following equation, $\cos 2\theta = \dfrac{{ - 2{{\tan }^2}\phi }}{{2 + 2{{\tan }^2}\phi }}.$
Taking 2 common from denominator, $\cos 2\theta = \dfrac{{ - 2{{\tan }^2}\phi }}{{2(1 + {{\tan }^2}\phi )}}.$
Cancelling the common factor 2 from both numerator and denominator, we get,
$\cos 2\theta = \dfrac{{ - {{\tan }^2}\phi }}{{1 + {{\tan }^2}\phi }}.$
We know that ${\tan ^2}\phi = \dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}$ therefore, we get,
$\cos 2\theta = \dfrac{{ - {{\tan }^2}\phi }}{{1 + {{\tan }^2}\phi }} = - \dfrac{{\dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}{{1 + \dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}$
Further simplifying the above equation we get, $\cos 2\theta = - \dfrac{{\dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}{{\dfrac{{{{\cos }^2}\phi + {{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}$
We now that ${\cos ^2}\phi + {\sin ^2}\phi = 1$substitute the identity in the above equation, we get,
\[\cos 2\theta = - \dfrac{{\dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}{{\dfrac{1}{{{{\cos }^2}\phi }}}}\]
Further simplifying the values we get,
\[\cos 2\theta = - \dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }} \times \dfrac{{{{\cos }^2}\phi }}{1} = - {\sin ^2}\phi .\]
Now we calculate the value of $\cos 2\theta + {\sin ^2}\phi .$
Putting the value of$\cos 2\theta = - {\sin ^2}\phi $, we obtain,
$\cos 2\theta + {\sin ^2}\phi = - {\sin ^2}\phi + {\sin ^2}\phi = 0.$
$\cos 2\theta + {\sin ^2}\phi $= 0
Hence we have come to the conclusion that the correct answer is option (B).
Note: $\sin \theta $ , $\cos \theta $ , $\tan \theta $ etc. are called circular angles. These are the ratios of three sides of a right angle triangle taking two sides at a time. The ratio of perpendicular and hypotenuse is $\sin \theta $, the ratio of base and hypotenuse is $\cos \theta $ and the ratio of perpendicular and base is $\tan \theta $. The reciprocal of $\sin \theta $ is $\co sec\theta $ , the reciprocal of $\cos \theta $ is $\sec \theta $ and the reciprocal of $\tan \theta $ is $\cot \theta .$ Also $\tan \theta $ is the ratio of $\sin \theta $ and $\cos \theta $, $\cot \theta $ is the ratio of $\cos \theta $ and $\sin \theta $ . If an angle be $\theta $ , then $2\theta $ is the multiple angle. So $\sin 2\theta ,\cos 2\theta $ are the sine and cosine formulae for multiple angles.
Complete step-by-step answer:
From the given equation we have ${\tan ^2}\theta = 2{\tan ^2}\phi + 1$.
We know that $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$ .
Let us substitute the value of ${\tan ^2}\theta $ in the above formula, we get,
$\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{{1 - (2{{\tan }^2}\phi + 1)}}{{1 + (2{{\tan }^2}\phi + 1)}}.$
Now we can simplify the above equation to get the following equation, $\cos 2\theta = \dfrac{{ - 2{{\tan }^2}\phi }}{{2 + 2{{\tan }^2}\phi }}.$
Taking 2 common from denominator, $\cos 2\theta = \dfrac{{ - 2{{\tan }^2}\phi }}{{2(1 + {{\tan }^2}\phi )}}.$
Cancelling the common factor 2 from both numerator and denominator, we get,
$\cos 2\theta = \dfrac{{ - {{\tan }^2}\phi }}{{1 + {{\tan }^2}\phi }}.$
We know that ${\tan ^2}\phi = \dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}$ therefore, we get,
$\cos 2\theta = \dfrac{{ - {{\tan }^2}\phi }}{{1 + {{\tan }^2}\phi }} = - \dfrac{{\dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}{{1 + \dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}$
Further simplifying the above equation we get, $\cos 2\theta = - \dfrac{{\dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}{{\dfrac{{{{\cos }^2}\phi + {{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}$
We now that ${\cos ^2}\phi + {\sin ^2}\phi = 1$substitute the identity in the above equation, we get,
\[\cos 2\theta = - \dfrac{{\dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }}}}{{\dfrac{1}{{{{\cos }^2}\phi }}}}\]
Further simplifying the values we get,
\[\cos 2\theta = - \dfrac{{{{\sin }^2}\phi }}{{{{\cos }^2}\phi }} \times \dfrac{{{{\cos }^2}\phi }}{1} = - {\sin ^2}\phi .\]
Now we calculate the value of $\cos 2\theta + {\sin ^2}\phi .$
Putting the value of$\cos 2\theta = - {\sin ^2}\phi $, we obtain,
$\cos 2\theta + {\sin ^2}\phi = - {\sin ^2}\phi + {\sin ^2}\phi = 0.$
$\cos 2\theta + {\sin ^2}\phi $= 0
Hence we have come to the conclusion that the correct answer is option (B).
Note: $\sin \theta $ , $\cos \theta $ , $\tan \theta $ etc. are called circular angles. These are the ratios of three sides of a right angle triangle taking two sides at a time. The ratio of perpendicular and hypotenuse is $\sin \theta $, the ratio of base and hypotenuse is $\cos \theta $ and the ratio of perpendicular and base is $\tan \theta $. The reciprocal of $\sin \theta $ is $\co sec\theta $ , the reciprocal of $\cos \theta $ is $\sec \theta $ and the reciprocal of $\tan \theta $ is $\cot \theta .$ Also $\tan \theta $ is the ratio of $\sin \theta $ and $\cos \theta $, $\cot \theta $ is the ratio of $\cos \theta $ and $\sin \theta $ . If an angle be $\theta $ , then $2\theta $ is the multiple angle. So $\sin 2\theta ,\cos 2\theta $ are the sine and cosine formulae for multiple angles.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which Country is Called "The Land of Festivals"?

What type of cell is found in the Seminiferous tub class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

