If \[\tan 5x = \cot 3x\,\]then \[x = (n \in z)\]
Answer
Verified
477k+ views
Hint: Trigonometric functions describe the relation between the sides and angles of a right triangle. ... The trigonometric functions include the following 6 functions: sine, cosine, tangent, cotangent, secant, and cosecant. For each of these functions, there is an inverse trigonometric function.
Always convert All the Trigonometric Function into the same function.
As to convert \[\tan x\] into \[\cot x\] the following ways are :
\[\cot x = \tan (\dfrac{\pi }{2} - y)\]
Formula for \[\tan \theta = \tan \alpha \] this is the solution.
\[ \Rightarrow \theta = n\pi + \alpha \]
Complete step-by- step solution:
Given \[\tan 5x = \cot 3x\]
Changing the \[cot\theta \]into \[tan\theta \] by writing \[cot\theta \]= \[tan\theta \]
Where \[\theta = 3x\]
\[\tan 5x = \tan (\dfrac{\pi }{2} - 3x)\]
For General formula of \[tan{\text{ }}x,\] when \[tan\theta = tan{\text{ }}\alpha \]
Then, \[\theta = n\pi {\text{ }} + \alpha \]
$\Rightarrow$\[5x = n\pi + \dfrac{\pi }{2} - 3x\]
Now on shifting \[\pi /2\] on right side we get
$\Rightarrow$\[5x + 3x = n\pi + \dfrac{\pi }{2}\]
$\Rightarrow$\[8x = n\pi + \dfrac{\pi }{2}\]
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$\[8x = \dfrac{{2n\pi + \pi }}{2}\]
Transposing 2 to left side and multiply with 8 we get
$\Rightarrow$\[8x \times 2 = 2n\pi + \pi \]
$\Rightarrow$\[16x = 2n\pi + \pi \]
Transposing 16 on right side as denominator
$\Rightarrow$\[x = \dfrac{1}{{16}}(2\pi n + \pi )\]
Hence Required value of \[x = \dfrac{1}{{16}}(2n\pi + \pi )\]
Or \[x = \dfrac{\pi }{{16}}(2n + 1)\] [Taking \[\pi \] common]
Note: Explanation for General solution of \[\tan \theta \]\[ = \tan \alpha \] is given by \[\theta = n\pi + \alpha ,\,n \in z\].
As follows,
\[\tan \theta = \tan \alpha \]
We know \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Taking \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] to L.H.S we get
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0\]
On taking taking LCM we get
$\Rightarrow$\[\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0\]
$\Rightarrow$\[\therefore \cos \theta \cos \alpha \times 0 = 0\]
$\Rightarrow$\[\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0\]
Identity: \[\sin \theta \cos \alpha - \sin \alpha \cos \theta \] ,\[\sin (\theta - \alpha )\]
\[\sin (\theta - \alpha ) = 0\]
\[ \Rightarrow \theta - \alpha = n\pi \], where \[n \in z\] i.e. \[(n = 0, \pm 1, \pm 2, \pm 3.....)\].
(since we know that \[\theta = n\pi ,n \in z\] is the general solution of the given equation \[\sin \theta = 0\]).
\[ \Rightarrow \theta = n\pi + \alpha ,\] where \[n \in z\] (i.e. \[n = 0,\,\, \pm 1,\,\,\, \pm 2,\,\, \pm 3).\]
Always convert All the Trigonometric Function into the same function.
As to convert \[\tan x\] into \[\cot x\] the following ways are :
\[\cot x = \tan (\dfrac{\pi }{2} - y)\]
Formula for \[\tan \theta = \tan \alpha \] this is the solution.
\[ \Rightarrow \theta = n\pi + \alpha \]
Complete step-by- step solution:
Given \[\tan 5x = \cot 3x\]
Changing the \[cot\theta \]into \[tan\theta \] by writing \[cot\theta \]= \[tan\theta \]
Where \[\theta = 3x\]
\[\tan 5x = \tan (\dfrac{\pi }{2} - 3x)\]
For General formula of \[tan{\text{ }}x,\] when \[tan\theta = tan{\text{ }}\alpha \]
Then, \[\theta = n\pi {\text{ }} + \alpha \]
$\Rightarrow$\[5x = n\pi + \dfrac{\pi }{2} - 3x\]
Now on shifting \[\pi /2\] on right side we get
$\Rightarrow$\[5x + 3x = n\pi + \dfrac{\pi }{2}\]
$\Rightarrow$\[8x = n\pi + \dfrac{\pi }{2}\]
Now on taking L.CM for the above term where L.C.M = 2 we get
$\Rightarrow$\[8x = \dfrac{{2n\pi + \pi }}{2}\]
Transposing 2 to left side and multiply with 8 we get
$\Rightarrow$\[8x \times 2 = 2n\pi + \pi \]
$\Rightarrow$\[16x = 2n\pi + \pi \]
Transposing 16 on right side as denominator
$\Rightarrow$\[x = \dfrac{1}{{16}}(2\pi n + \pi )\]
Hence Required value of \[x = \dfrac{1}{{16}}(2n\pi + \pi )\]
Or \[x = \dfrac{\pi }{{16}}(2n + 1)\] [Taking \[\pi \] common]
Note: Explanation for General solution of \[\tan \theta \]\[ = \tan \alpha \] is given by \[\theta = n\pi + \alpha ,\,n \in z\].
As follows,
\[\tan \theta = \tan \alpha \]
We know \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Taking \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] to L.H.S we get
$\Rightarrow$ \[\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\sin \alpha }}{{\cos \alpha }} = 0\]
On taking taking LCM we get
$\Rightarrow$\[\dfrac{{\sin \theta \cos \alpha - \sin \alpha \cos \theta }}{{\cos \theta \cos \alpha }} = 0\]
$\Rightarrow$\[\therefore \cos \theta \cos \alpha \times 0 = 0\]
$\Rightarrow$\[\sin \theta \cos \alpha - \sin \alpha \cos \theta = 0\]
Identity: \[\sin \theta \cos \alpha - \sin \alpha \cos \theta \] ,\[\sin (\theta - \alpha )\]
\[\sin (\theta - \alpha ) = 0\]
\[ \Rightarrow \theta - \alpha = n\pi \], where \[n \in z\] i.e. \[(n = 0, \pm 1, \pm 2, \pm 3.....)\].
(since we know that \[\theta = n\pi ,n \in z\] is the general solution of the given equation \[\sin \theta = 0\]).
\[ \Rightarrow \theta = n\pi + \alpha ,\] where \[n \in z\] (i.e. \[n = 0,\,\, \pm 1,\,\,\, \pm 2,\,\, \pm 3).\]
Recently Updated Pages
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How is Abiogenesis Theory Disproved Experimentally?
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Differentiate between calcination and roasting class 11 chemistry CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE