If the angle between the tangents drawn from a point \[P\] to the parabola \[{{y}^{2}}=4ax\] is \[{{45}^{\circ }}\], then the locus of \[P\] is
a. Parabola
b. Ellipse
c. Hyperbola
d. Circle
Answer
Verified
502.8k+ views
Hint: To find the locus of point from which tangents to the parabola are drawn at a certain angle, write the equation of tangents at any two points on the parabola and find their point of intersection. Use the angle formula to find the relation between the slope of the two tangents.
Complete step-by-step answer:
We have a parabola \[{{y}^{2}}=4ax\] to which two tangents are drawn from a point and the angle between those two tangents is \[{{45}^{\circ }}\].
Let’s assume that the tangents drawn from point \[P\] touch the parabola \[{{y}^{2}}= 4ax\] at points$Q\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$and$R\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)$.
We know that the equation of tangents at these two points will intersect at \[P\] whose coordinates are of the form\[\left[ a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right]\].
The equation of tangent at any point\[\left( a{{t}^{2}},2at \right)\] of the parabola \[{{y}^{2}}=4ax\] is of the form \[y=\dfrac{x}{t}+at\]
So, the slope of tangent through \[Q\left( {{t}_{1}} \right)\] is \[\dfrac{1}{{{t}_{1}}}\] and \[R\left( {{t}_{2}} \right)\] is \[\dfrac{1}{{{t}_{2}}}\].
We know that the angle \[\alpha \] between two lines of slope \[{{m}_{1}}\] and \[{{m}_{2}}\] has the formula \[\tan \alpha =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|\]
So, the angle between tangents of slope \[\dfrac{1}{{{t}_{1}}}\] and \[\dfrac{1}{{{t}_{2}}}\] is \[{{45}^{\circ }}\]
\[\Rightarrow \tan {{45}^{\circ }}=1=\left| \dfrac{\dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}}{1+\dfrac{1}{{{t}_{1}}}\cdot \dfrac{1}{{{t}_{2}}}} \right|\]
\[\Rightarrow \dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}=\pm \left( 1+\dfrac{1}{{{t}_{1}}}\cdot \dfrac{1}{{{t}_{2}}} \right)\]
\[\Rightarrow {{t}_{2}}-{{t}_{1}}=\pm \left( {{t}_{1}}{{t}_{2}}+1 \right)\]
To find the value of \[{{t}_{1}}+{{t}_{2}}\], we use the formula \[{{t}_{1}}+{{t}_{2}}=\sqrt{{{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}+4{{t}_{1}}{{t}_{2}}}\]
\[\begin{align}
& \Rightarrow {{t}_{1}}+{{t}_{2}}=\sqrt{{{\left( {{t}_{1}}{{t}_{2}}+1 \right)}^{2}}+4{{t}_{1}}{{t}_{2}}} \\
& \Rightarrow {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}=1+6{{t}_{1}}{{t}_{2}}+{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}} \\
& \\
\end{align}\] \[(1)\]
We know coordinates of \[P\] are of the form \[\left[ a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right]\].
Let’s assume \[x=a{{t}_{1}}{{t}_{2}},y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
\[\Rightarrow \dfrac{x}{a}={{t}_{1}}{{t}_{2}},\dfrac{y}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)\]
Substituting these values in equation\[(1)\], we get\[{{\left( \dfrac{y}{a} \right)}^{2}}=1+6\dfrac{x}{a}+{{\left( \dfrac{x}{a} \right)}^{2}}\]
Adding \[9\] on both sides of above equation, we get\[{{\left( \dfrac{y}{a} \right)}^{2}}+9=1+9+6\dfrac{x}{a}+{{\left( \dfrac{x}{a} \right)}^{2}}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{y}{a} \right)}^{2}}+9=1+{{\left( \dfrac{x}{a}+3 \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{a}+3 \right)}^{2}}-{{\left( \dfrac{y}{a} \right)}^{2}}=8 \\
& \Rightarrow \dfrac{{{\left( \dfrac{x}{a}+3 \right)}^{2}}}{8}-\dfrac{{{\left( \dfrac{y}{a} \right)}^{2}}}{8}=1 \\
\end{align}\]
We observe that the locus of points from which two tangents are drawn at a certain angle is hyperbola.
However, it is not necessary that we will always get a hyperbola. The locus of curve changes with change in angle between the two tangents. If the two tangents are perpendicular to each other, we will get the equation of locus of their point of intersection as a straight line.
Hence, the correct answer is (c) Hyperbola.
Note: We can also find the locus of \[P\] by taking any general point instead of using parametric form and then write the equation of tangents from the general point. Keep in mind that while removing the modulus, we will consider both negative and positive values.
Complete step-by-step answer:
We have a parabola \[{{y}^{2}}=4ax\] to which two tangents are drawn from a point and the angle between those two tangents is \[{{45}^{\circ }}\].
Let’s assume that the tangents drawn from point \[P\] touch the parabola \[{{y}^{2}}= 4ax\] at points$Q\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$and$R\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)$.
We know that the equation of tangents at these two points will intersect at \[P\] whose coordinates are of the form\[\left[ a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right]\].
The equation of tangent at any point\[\left( a{{t}^{2}},2at \right)\] of the parabola \[{{y}^{2}}=4ax\] is of the form \[y=\dfrac{x}{t}+at\]
So, the slope of tangent through \[Q\left( {{t}_{1}} \right)\] is \[\dfrac{1}{{{t}_{1}}}\] and \[R\left( {{t}_{2}} \right)\] is \[\dfrac{1}{{{t}_{2}}}\].
We know that the angle \[\alpha \] between two lines of slope \[{{m}_{1}}\] and \[{{m}_{2}}\] has the formula \[\tan \alpha =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|\]
So, the angle between tangents of slope \[\dfrac{1}{{{t}_{1}}}\] and \[\dfrac{1}{{{t}_{2}}}\] is \[{{45}^{\circ }}\]
\[\Rightarrow \tan {{45}^{\circ }}=1=\left| \dfrac{\dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}}{1+\dfrac{1}{{{t}_{1}}}\cdot \dfrac{1}{{{t}_{2}}}} \right|\]
\[\Rightarrow \dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}=\pm \left( 1+\dfrac{1}{{{t}_{1}}}\cdot \dfrac{1}{{{t}_{2}}} \right)\]
\[\Rightarrow {{t}_{2}}-{{t}_{1}}=\pm \left( {{t}_{1}}{{t}_{2}}+1 \right)\]
To find the value of \[{{t}_{1}}+{{t}_{2}}\], we use the formula \[{{t}_{1}}+{{t}_{2}}=\sqrt{{{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}+4{{t}_{1}}{{t}_{2}}}\]
\[\begin{align}
& \Rightarrow {{t}_{1}}+{{t}_{2}}=\sqrt{{{\left( {{t}_{1}}{{t}_{2}}+1 \right)}^{2}}+4{{t}_{1}}{{t}_{2}}} \\
& \Rightarrow {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}=1+6{{t}_{1}}{{t}_{2}}+{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}} \\
& \\
\end{align}\] \[(1)\]
We know coordinates of \[P\] are of the form \[\left[ a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right]\].
Let’s assume \[x=a{{t}_{1}}{{t}_{2}},y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
\[\Rightarrow \dfrac{x}{a}={{t}_{1}}{{t}_{2}},\dfrac{y}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)\]
Substituting these values in equation\[(1)\], we get\[{{\left( \dfrac{y}{a} \right)}^{2}}=1+6\dfrac{x}{a}+{{\left( \dfrac{x}{a} \right)}^{2}}\]
Adding \[9\] on both sides of above equation, we get\[{{\left( \dfrac{y}{a} \right)}^{2}}+9=1+9+6\dfrac{x}{a}+{{\left( \dfrac{x}{a} \right)}^{2}}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{y}{a} \right)}^{2}}+9=1+{{\left( \dfrac{x}{a}+3 \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{a}+3 \right)}^{2}}-{{\left( \dfrac{y}{a} \right)}^{2}}=8 \\
& \Rightarrow \dfrac{{{\left( \dfrac{x}{a}+3 \right)}^{2}}}{8}-\dfrac{{{\left( \dfrac{y}{a} \right)}^{2}}}{8}=1 \\
\end{align}\]
We observe that the locus of points from which two tangents are drawn at a certain angle is hyperbola.
However, it is not necessary that we will always get a hyperbola. The locus of curve changes with change in angle between the two tangents. If the two tangents are perpendicular to each other, we will get the equation of locus of their point of intersection as a straight line.
Hence, the correct answer is (c) Hyperbola.
Note: We can also find the locus of \[P\] by taking any general point instead of using parametric form and then write the equation of tangents from the general point. Keep in mind that while removing the modulus, we will consider both negative and positive values.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE