If the axis of the parabola is horizontal and it passes through the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$, then find its equation?
(a) ${{y}^{2}}+3y-x-4=0$
(b) ${{y}^{2}}+3y+x-4=0$
(c) ${{y}^{2}}-3y-x-4=0$.
(d) None of these
Answer
Verified
465k+ views
Hint: We start solving the problem by recalling the general equation of the parabola whose axis is horizontal as ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$. We then substitute the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$ each at once to get the relations between ‘h’, ‘k’ and ‘a’. We then make the necessary calculations between these three relations to get the values of ‘h’, ‘k’ and ‘a’. We then substitute these values in the general equation of parabola to get the required equation.
Complete step by step answer:
According to the problem, we are given that the axis of the parabola is horizontal and we need to find the equation of parabola if it passes through the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$.
We know that the general equation of the parabola is ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$, if the axis of the parabola is horizontal.
Let us substitute the point $\left( 0,0 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 0-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}=-4ah$ ---(1).
Let us substitute the point $\left( 0,-1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( -1-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}+2k+1=-4ah$.
From equation (1) we get ${{k}^{2}}+2k+1={{k}^{2}}$.
$\Rightarrow 2k+1=0$.
$\Rightarrow 2k=-1$.
$\Rightarrow k=\dfrac{-1}{2}$ ---(2).
Let us substitute equation (2) in equation (1), we get
$\Rightarrow {{\left( \dfrac{-1}{2} \right)}^{2}}=-4ah$.
$\Rightarrow \dfrac{1}{4}=-4ah$.
$\Rightarrow h=\dfrac{-1}{16a}$ ---(3).
Let us substitute the point $\left( 6,1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 1-k \right)}^{2}}=4a\left( 6-h \right)$.
From equations (2) and (3), we get ${{\left( 1+\dfrac{1}{2} \right)}^{2}}=4a\left( 6-\left( \dfrac{-1}{16a} \right) \right)$.
$\Rightarrow {{\left( \dfrac{3}{2} \right)}^{2}}=4a\left( 6+\dfrac{1}{16a} \right)$.
$\Rightarrow \dfrac{9}{4}=24a+\dfrac{1}{4}$.
$\Rightarrow 2=24a$.
$\Rightarrow a=\dfrac{1}{12}$ ---(4).
Let us substitute equation (4) in equation (3).
So, we get $h=\dfrac{-1}{16\left( \dfrac{1}{12} \right)}=\dfrac{-3}{4}$ ---(5).
Let us substitute the values of ‘h’, ‘k’ and ‘a’ obtained from equations (2), (4) and (5) in ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( y+\dfrac{1}{2} \right)}^{2}}=4\left( \dfrac{1}{12} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow {{y}^{2}}+y+\dfrac{1}{4}=\left( \dfrac{1}{3} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow 3{{y}^{2}}+3y+\dfrac{3}{4}=x+\dfrac{3}{4}$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
So, we have found the equation of the parabola as $3{{y}^{2}}+3y-x=0$.
So, the correct answer is “Option d”.
Note: We can also take the general equation of the parabola whose axis is horizontal (axis is parallel to x-axis) as $x=a{{y}^{2}}+by+c$ which can be solved as shown below.
Let us substitute the point $\left( 0,0 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( 0 \right)}^{2}}+b\left( 0 \right)+c$.
$\Rightarrow 0=0+0+c$.
$\Rightarrow c=0$ ---(6).
Let us substitute the point $\left( 0,-1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( -1 \right)}^{2}}+b\left( -1 \right)+c$.
From equation (6).
$\Rightarrow 0=a-b+0$.
$\Rightarrow a-b=0$ ---(7).
Let us substitute the point $\left( 6,1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $6=a{{\left( 1 \right)}^{2}}+b\left( 1 \right)+c$.
From equation (6).
$\Rightarrow 6=a+b+0$.
$\Rightarrow a+b=6$ ---(8).
On solving equations (7) and (8), we get $a=3$ and $b=3$.
So, we get the equation of the parabola as $x=3{{y}^{2}}+3y+0$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
Complete step by step answer:
According to the problem, we are given that the axis of the parabola is horizontal and we need to find the equation of parabola if it passes through the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$.
We know that the general equation of the parabola is ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$, if the axis of the parabola is horizontal.
Let us substitute the point $\left( 0,0 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 0-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}=-4ah$ ---(1).
Let us substitute the point $\left( 0,-1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( -1-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}+2k+1=-4ah$.
From equation (1) we get ${{k}^{2}}+2k+1={{k}^{2}}$.
$\Rightarrow 2k+1=0$.
$\Rightarrow 2k=-1$.
$\Rightarrow k=\dfrac{-1}{2}$ ---(2).
Let us substitute equation (2) in equation (1), we get
$\Rightarrow {{\left( \dfrac{-1}{2} \right)}^{2}}=-4ah$.
$\Rightarrow \dfrac{1}{4}=-4ah$.
$\Rightarrow h=\dfrac{-1}{16a}$ ---(3).
Let us substitute the point $\left( 6,1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 1-k \right)}^{2}}=4a\left( 6-h \right)$.
From equations (2) and (3), we get ${{\left( 1+\dfrac{1}{2} \right)}^{2}}=4a\left( 6-\left( \dfrac{-1}{16a} \right) \right)$.
$\Rightarrow {{\left( \dfrac{3}{2} \right)}^{2}}=4a\left( 6+\dfrac{1}{16a} \right)$.
$\Rightarrow \dfrac{9}{4}=24a+\dfrac{1}{4}$.
$\Rightarrow 2=24a$.
$\Rightarrow a=\dfrac{1}{12}$ ---(4).
Let us substitute equation (4) in equation (3).
So, we get $h=\dfrac{-1}{16\left( \dfrac{1}{12} \right)}=\dfrac{-3}{4}$ ---(5).
Let us substitute the values of ‘h’, ‘k’ and ‘a’ obtained from equations (2), (4) and (5) in ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( y+\dfrac{1}{2} \right)}^{2}}=4\left( \dfrac{1}{12} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow {{y}^{2}}+y+\dfrac{1}{4}=\left( \dfrac{1}{3} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow 3{{y}^{2}}+3y+\dfrac{3}{4}=x+\dfrac{3}{4}$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
So, we have found the equation of the parabola as $3{{y}^{2}}+3y-x=0$.
So, the correct answer is “Option d”.
Note: We can also take the general equation of the parabola whose axis is horizontal (axis is parallel to x-axis) as $x=a{{y}^{2}}+by+c$ which can be solved as shown below.
Let us substitute the point $\left( 0,0 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( 0 \right)}^{2}}+b\left( 0 \right)+c$.
$\Rightarrow 0=0+0+c$.
$\Rightarrow c=0$ ---(6).
Let us substitute the point $\left( 0,-1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( -1 \right)}^{2}}+b\left( -1 \right)+c$.
From equation (6).
$\Rightarrow 0=a-b+0$.
$\Rightarrow a-b=0$ ---(7).
Let us substitute the point $\left( 6,1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $6=a{{\left( 1 \right)}^{2}}+b\left( 1 \right)+c$.
From equation (6).
$\Rightarrow 6=a+b+0$.
$\Rightarrow a+b=6$ ---(8).
On solving equations (7) and (8), we get $a=3$ and $b=3$.
So, we get the equation of the parabola as $x=3{{y}^{2}}+3y+0$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
Which is not a source of freshwater 1 Glaciers and class 11 chemistry CBSE
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE